Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Gastroenterol ; 59(9): 869-879, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38864913

RESUMEN

BACKGROUND: Accumulating evidence has shown that the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the inflammatory cascades involved in the development of acute pancreatitis (AP). However, the specific agonist responsible for activating the NLRP3 inflammasome in this process has not yet been identified. The purpose of this study is to clarify whether heparan sulfate (HS) works as an NLRP3 inflammasome activator to evoke inflammatory cascades in the progression of AP. METHODS: Two experimental mouse models of AP were utilized to investigate the pro-inflammatory activity of HS in the development of AP by measuring the secretion of inflammatory cytokines and the neutrophil infiltration in pancreatic tissue. The ability of HS to activate the NLRP3 inflammasome was evaluated both in vitro and in vivo. The nuclear factor kappa B (NF-κB)-mediated expression of NLRP3 inflammasome components in response to HS treatment was determined to decipher the role of HS in transcriptional priming of NLRP3 inflammasome. Furthermore, HS-triggered deubiquitination of NLRP3 was analyzed to reveal the promoting effect of HS on the NLRP3 inflammasome priming via a non-transcriptional pathway. RESULTS: High plasma level of HS was observed with a positive correlation to that of inflammatory cytokines in AP mice. Administration of HS to mice resulted in an exacerbated inflammatory profile, while reducing HS production by an inhibitor of heparanase significantly attenuated inflammatory response. Pharmacological inhibition or genetic deletion of NLRP3 substantially suppressed the HS-stimulated elevation of IL-1ß levels in AP mice. The in vitro data demonstrated that HS primarily serves as a priming signal for the activation of the NLRP3 inflammasome. HS possesses the ability to increase the transcriptional activity of NF-κB and TLR4/NF-κB-driven transcriptional pathway is employed for NLRP3 inflammasome priming. Moreover, HS-induced deubiquitination of NLRP3 is another pathway responsible for non-transcriptional priming of NLRP3 inflammasome. CONCLUSIONS: Our current work has unveiled HS as a new activator of the NLRP3 inflammasome responsible for the secondary inflammatory cascades during the development of AP, highlighting the HS-NLRP3 pathway as a potential target for future preventive and therapeutic approaches of AP.


Asunto(s)
Modelos Animales de Enfermedad , Heparitina Sulfato , Inflamasomas , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Pancreatitis , Animales , Masculino , Ratones , Enfermedad Aguda , Citocinas/metabolismo , Heparitina Sulfato/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pancreatitis/metabolismo
2.
PeerJ ; 11: e16177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868063

RESUMEN

Trace elements play a crucial role in the growth and bioactive substance content of medicinal plants, but their utilization efficiency in soil is often low. In this study, soil and Aconitum carmichaelii samples were collected and measured from 22 different locations, followed by an analysis of the relationship between trace elements and the yield and alkaloid content of the plants. The results indicated a significant positive correlation between zinc, trace elements in the soil, and the yield and alkaloid content of A. carmichaelii. Subsequent treatment of A. carmichaelii with both bulk zinc oxide (ZnO) and zinc oxide nanoparticles (ZnO NPs) demonstrated that the use of ZnO NPs significantly enhanced plant growth and monoester-type alkaloid content. To elucidate the underlying mechanisms responsible for these effects, metabolomic analysis was performed, resulting in the identification of 38 differentially expressed metabolites in eight metabolic pathways between the two treatments. Additionally, significant differences were observed in the rhizosphere bacterial communities, with Bacteroidota and Actinobacteriota identified as valuable biomarkers for ZnO NP treatment. Covariation analysis further revealed significant correlations between specific microbial communities and metabolite expression levels. These findings provide compelling evidence that nanoscale zinc exhibits much higher utilization efficiency compared to traditional zinc fertilizer.


Asunto(s)
Aconitum , Alcaloides , Microbiota , Oligoelementos , Óxido de Zinc , Óxido de Zinc/farmacología , Rizosfera , Zinc , Bacterias , Suelo
3.
Inflamm Res ; 72(9): 1919-1932, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37725105

RESUMEN

OBJECTIVE: Nafamostat mesilate (NM), a synthetic broad-spectrum serine protease inhibitor, has been commonly used for treating acute pancreatitis (AP) and other inflammatory-associated diseases in some East Asia countries. Although the potent inhibitory activity against inflammation-related proteases (such as thrombin, trypsin, kallikrein, plasmin, coagulation factors, and complement factors) is generally believed to be responsible for the anti-inflammatory effects of NM, the precise target and molecular mechanism underlying its anti-inflammatory activity in AP treatment remain largely unknown. METHODS: The protection of NM against pancreatic injury and inhibitory effect on the NOD-like receptor protein 3 (NLRP3) inflammasome activation were investigated in an experimental mouse model of AP. To decipher the molecular mechanism of NM, the effects of NM on nuclear factor kappa B (NF-κB) activity and NF-κB mediated NLRP3 inflammasome priming were examined in lipopolysaccharide (LPS)-primed THP-1 cells. Additionally, the potential of NM to block the activity of histone deacetylase 6 (HDAC6) and disrupt the association between HDAC6 and NLRP3 was also evaluated. RESULTS: NM significantly suppressed NLRP3 inflammasome activation in the pancreas, leading to a reduction in pancreatic inflammation and prevention of pancreatic injury during AP. NM was found to interact with HDAC6 and effectively inhibit its function. This property allowed NM to influence HDAC6-dependent NF-κB transcriptional activity, thereby blocking NF-κB-driven transcriptional priming of the NLRP3 inflammasome. Furthermore, NM exhibited the potential to interfere the association between HDAC6 and NLRP3, impeding HDAC6-mediated intracellular transport of NLRP3 and ultimately preventing NLRP3 inflammasome activation. CONCLUSIONS: Our current work has provided valuable insight into the molecular mechanism underlying the immunomodulatory effect of NM in the treatment of AP, highlighting its promising application in the prevention of NLRP3 inflammasome-associated inflammatory pathological damage.


Asunto(s)
Inflamasomas , Pancreatitis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/prevención & control , FN-kappa B/metabolismo , Ceruletida/efectos adversos , Proteínas NLR , Histona Desacetilasa 6/uso terapéutico , Enfermedad Aguda , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA