Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Geophys Res Oceans ; 125(6): e2020JC016124, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32728505

RESUMEN

The Arctic Ocean is particularly vulnerable to ocean acidification, a process that is mainly driven by the uptake of anthropogenic carbon (Cant) from the atmosphere. Although Cant concentrations cannot be measured directly in the ocean, they have been estimated using data-based methods such as the transient time distribution (TTD) approach, which characterizes the ventilation of water masses with inert transient tracers, such as CFC-12. Here, we evaluate the TTD approach in the Arctic Ocean using an eddying ocean model as a test bed. When the TTD approach is applied to simulated CFC-12 in that model, it underestimates the same model's directly simulated Cant concentrations by up to 12%, a bias that stems from its idealized assumption of gas equilibrium between atmosphere and surface water, both for CFC-12 and anthropogenic CO2. Unlike the idealized assumption, the simulated partial pressure of CFC-12 (pCFC-12) in Arctic surface waters is undersaturated relative to that in the atmosphere in regions and times of deep-water formation, while the simulated equivalent for Cant is supersaturated. After accounting for the TTD approach's negative bias, the total amount of Cant in the Arctic Ocean in 2005 increases by 8% to 3.3 ± 0.3 Pg C. By combining the adjusted TTD approach with scenarios of future atmospheric CO2, it is estimated that all Arctic waters, from surface to depth, would become corrosive to aragonite by the middle of the next century even if atmospheric CO2 could be stabilized at 540 ppm.

2.
Ann Rev Mar Sci ; 8: 185-215, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26515811

RESUMEN

Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.


Asunto(s)
Carbono/análisis , Agua de Mar/química , Clima , Oceanografía/instrumentación , Navíos , Temperatura , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA