Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
iScience ; 27(2): 108807, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303726

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37377441

RESUMEN

INTRODUCTION: Leadership skills are essential for a successful career in medical research but are often not formally taught. To address these gaps, we designed a leadership development program for early-stage investigators. METHODS: A 9-month virtual program with monthly 2-hour interactive sessions was designed, covering topics such as Leadership in Research, Mentoring, Building Diverse and Inclusive Teams, Managing Conflict, Influencing without Authority, Grant Administration, and Management. An anonymized survey was sent to participants before and after completion of the program, and the results were compared using the chi-squared test. RESULTS: Over a 2-year period, we selected two cohorts of 41 and 46 participants, respectively. After completion of the program, 92% of survey respondents indicated that the program met their expectations and 74% had made use of skills they learned. Participants enjoyed meeting new people and discussing common challenges. There was an increase in participants' perceived understanding of personal leadership qualities, mentoring, communication, conflict resolution, grant management, and collaboration with industry (P < .05). DISCUSSION: A leadership development program for early-stage investigators led to a significant increase in participants' perceived understanding of personal leadership qualities and competencies. It also offered participants the opportunity to meet other researchers in the institution and discuss common challenges.

3.
Front Cell Neurosci ; 17: 1134130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138770

RESUMEN

The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.

4.
Protein Cell ; 14(6): 579-590, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36905391

RESUMEN

Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.


Asunto(s)
Plaquetas , Neoplasias Ováricas , Humanos , Femenino , Plaquetas/patología , Biomarcadores de Tumor/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , China
5.
ACS Appl Mater Interfaces ; 15(1): 182-199, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35929960

RESUMEN

Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Vesículas Extracelulares , Nanoestructuras , Humanos , Medicina de Precisión , Nanotecnología , Enfermedades del Sistema Nervioso Central/diagnóstico , Enfermedades del Sistema Nervioso Central/terapia , Vesículas Extracelulares/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142465

RESUMEN

Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates ß-amyloid (Aß) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aß levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer's disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aß accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aß reduction.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , ARN Largo no Codificante , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Biotina , Cognición , Ratones , MicroARNs/metabolismo , Placa Amiloide , Presenilina-1/genética , ARN Largo no Codificante/genética
7.
Nat Commun ; 13(1): 3882, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794100

RESUMEN

Mitochondrial dynamics can regulate Major Histocompatibility Complex (MHC)-I antigen expression by cancer cells and their immunogenicity in mice and in patients with malignancies. A crucial role in the mitochondrial fragmentation connection with immunogenicity is played by the IRE1α-XBP-1s axis. XBP-1s is a transcription factor for aminopeptidase TPP2, which inhibits MHC-I complex cell surface expression likely by degrading tumor antigen peptides. Mitochondrial fission inhibition with Mdivi-1 upregulates MHC-I expression on cancer cells and enhances the efficacy of adoptive T cell therapy in patient-derived tumor models. Therefore mitochondrial fission inhibition might provide an approach to enhance the efficacy of T cell-based immunotherapy.


Asunto(s)
Dinámicas Mitocondriales , Neoplasias , Animales , Endorribonucleasas , Complejo Mayor de Histocompatibilidad , Ratones , Dinámicas Mitocondriales/fisiología , Neoplasias/terapia , Proteínas Serina-Treonina Quinasas
8.
Cell Chem Biol ; 29(8): 1333-1340.e5, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35649410

RESUMEN

We describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras [PROTACs]) that is capable of both accurately quantifying protein levels in whole-cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small-molecule inhibitors and PROTACs in a high-throughput format with unmodified cell lines. We furthermore validate our platform in the characterization of celastrol, a p-quinone methide-containing pentacyclic triterpenoid, as a broad cysteine-targeting E3 ubiquitin ligase warhead for potent and efficient targeted protein degradation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Triterpenos Pentacíclicos , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
ACS Nano ; 16(2): 1940-1953, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35099172

RESUMEN

The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Animales , Antígeno B7-H1 , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Vesículas Extracelulares/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Inhibidores de Puntos de Control Inmunológico , Ratones , Microambiente Tumoral
10.
iScience ; 24(12): 103519, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34917897

RESUMEN

Olfactory receptors (ORs), responsible for the sense of smell, play an essential role in various physiological processes outside the nasal epithelium, including cancer. In breast cancer, however, the expression and function of ORs remain understudied. We examined the significance of OR transcript abundance in primary and metastatic breast cancer to the brain, bone, and lung. Although 20 OR transcripts were differentially expressed in distant metastases, OR5B21 displayed an increased transcript abundance in all three metastatic sites compared with the primary tumor. Knockdown of OR5B21 significantly decreased the invasion and migration of breast cancer cells as well as metastasis to different organs especially the brain, whereas increasing of OR5B21 transcript abundance had the opposite effect. Mechanistically, OR5B21 expression was associated with epithelial to mesenchymal transition through the STAT3/NF-κB/CEBPß signaling axis. We propose OR5B21 (and potentially other ORs) as a novel oncogene contributing to breast cancer metastasis and a potential target for adjuvant therapy.

12.
Theranostics ; 11(13): 6507-6521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995671

RESUMEN

Ischemic stroke remains a major cause of death, and anti-inflammatory strategies hold great promise for preventing major brain injury during reperfusion. In the past decade, stem cell-derived extracellular vesicles (EVs) have emerged as novel therapeutic effectors in immune modulation. However, the intravenous delivery of EVs into the ischemic brain remains a challenge due to poor targeting of unmodified EVs, and the costs of large-scale production of stem cell-derived EVs hinder their clinical application. Methods: EVs were isolated from a human neural progenitor cell line, and their anti-inflammatory effects were verified in vitro. To attach targeting ligands onto EVs, we generated a recombinant fusion protein containing the arginine-glycine-aspartic acid (RGD)-4C peptide (ACDCRGDCFC) fused to the phosphatidylserine (PS)-binding domains of lactadherin (C1C2), which readily self-associates onto the EV membrane. Subsequently, in a middle cerebral artery occlusion (MCAO) mouse model, the RGD-C1C2-bound EVs (RGD-EV) were intravenously injected through the tail vein, followed by fluorescence imaging and assessment of proinflammatory cytokines expression and microglia activation. Results: The neural progenitor cell-derived EVs showed intrinsic anti-inflammatory activity. The RGD-EV targeted the lesion region of the ischemic brain after intravenous administration, and resulted in a strong suppression of the inflammatory response. Furthermore, RNA sequencing revealed a set of 7 miRNAs packaged in the EVs inhibited MAPK, an inflammation related pathway. Conclusion: These results point to a rapid and easy strategy to produce targeting EVs and suggest a potential therapeutic agent for ischemic stroke.


Asunto(s)
Isquemia Encefálica/terapia , Vesículas Extracelulares/fisiología , Infarto de la Arteria Cerebral Media/terapia , Inflamación/prevención & control , Células-Madre Neurales/citología , Animales , Antígenos de Superficie/química , Antígenos de Superficie/farmacología , Isquemia Encefálica/complicaciones , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Genes Reporteros , Células HEK293 , Humanos , Infarto de la Arteria Cerebral Media/complicaciones , Inflamación/etiología , Inyecciones Intravenosas , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/farmacología , Nanopartículas , Células-Madre Neurales/química , Oligopéptidos/farmacología , Fosfatidilserinas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología
13.
Clin Cancer Res ; 27(13): 3757-3771, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33811153

RESUMEN

PURPOSE: The limited efficacy of chimeric antigen receptor (CAR) T-cell therapies with solid malignancies prompted us to test whether epigenetic therapy could enhance the antitumor activity of B7-H3.CAR T cells with several solid cancer types. EXPERIMENTAL DESIGN: We evaluated B7-H3 expression in many human solid cancer and normal tissue samples. The efficacy of the combinatorial therapy with B7-H3.CAR T cells and the deacetylase inhibitor SAHA with several solid cancer types and the potential underlying mechanisms were characterized with in vitro and ex vivo experiments. RESULTS: B7-H3 is expressed in most of the human solid tumor samples tested, but exhibits a restricted expression in normal tissues. B7-H3.CAR T cells selectively killed B7-H3 expressing human cancer cell lines in vitro. A low dose of SAHA upregulated B7-H3 expression in several types of solid cancer cells at the transcriptional level and B7-H3.CAR expression on human transgenic T-cell membrane. In contrast, the expression of immunosuppressive molecules, such as CTLA-4 and TET2, by T cells was downregulated upon SAHA treatment. A low dose of SAHA significantly enhanced the antitumor activity of B7-H3.CAR T cells with solid cancers in vitro and ex vivo, including orthotopic patient-derived xenograft and metastatic models treated with autologous CAR T-cell infusions. CONCLUSIONS: Our results show that our novel strategy which combines SAHA and B7-H3.CAR T cells enhances their therapeutic efficacy with solid cancers and justify its translation to a clinical setting.


Asunto(s)
Antígenos B7 , Inhibidores de Histona Desacetilasas/uso terapéutico , Inmunoterapia Adoptiva , Neoplasias/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Animales , Terapia Combinada , Humanos , Ratones , Células Tumorales Cultivadas
14.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523984

RESUMEN

Tuberous sclerosis complex (TSC) results from loss of a tumor suppressor gene - TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins formed a complex to inhibit mTORC1-mediated cell growth and proliferation. Loss of either protein leads to overgrowth lesions in many vital organs. Gene therapy was evaluated in a mouse model of TSC2 using an adeno-associated virus (AAV) vector carrying the complementary for a "condensed" form of human tuberin (cTuberin). Functionality of cTuberin was verified in culture. A mouse model of TSC2 was generated by AAV-Cre recombinase disruption of Tsc2-floxed alleles at birth, leading to a shortened lifespan (mean 58 days) and brain pathology consistent with TSC. When these mice were injected intravenously on day 21 with AAV9-cTuberin, the mean survival was extended to 462 days with reduction in brain pathology. This demonstrates the potential of treating life-threatening TSC2 lesions with a single intravenous injection of AAV9-cTuberin.

15.
Cardiovasc Res ; 117(3): 918-929, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32251516

RESUMEN

AIMS: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction. METHODS AND RESULTS: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs. CONCLUSIONS: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.


Asunto(s)
Infarto del Miocardio/cirugía , Miocardio/patología , Proteoma , Regeneración , Secretoma , Trasplante de Células Madre , Células Madre/metabolismo , Animales , Antígenos de Superficie/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Neovascularización Fisiológica , Proteómica , Ratas Desnudas , Trasplante de Células Madre/instrumentación , Factores de Tiempo
16.
BBA Adv ; 1: 100025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37082016

RESUMEN

Epitranscriptomic variations include >140 different RNA modifications, many of which can serve as disease biomarkers. Owing to the challenges on synthesizing modified RNA oligos, majority of earlier studies on the effects of RNA modifications to RNA duplexes focused on selected individual epitranscriptomic variation. There are also limited development on the computational modeling of RNA duplexes containing a specific epitranscriptomic variation. This study aims to theoretically estimate the physical properties of different modified ribonucleosides and compare their variations with respect to altering the molecular structure of an RNA duplex.

17.
Neurooncol Adv ; 2(1): vdaa106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134921

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are aggressive primary brain tumors with local invasive growth and poor clinical prognosis. Treatment of pHGGs is particularly challenging given the intrinsic resistance to chemotherapy, an absence of novel therapeutics, and the difficulty of drugs to reach the tumor beds. Accumulating evidence suggests that production of reactive oxygen species (ROS) and misfolded proteins, which typically leads to endoplasmic reticulum (ER) stress, is an essential mechanism in cancer cell survival. METHODS: Several cell viability assays were used in 6 patient-derived pHGG cultures to evaluate the effect of the natural compound obtusaquinone (OBT) on cytotoxicity. Orthotopic mouse models were used to determine OBT effects in vivo. Immunoblotting, immunostaining, flow cytometry, and biochemical assays were used to investigate the OBT mechanism of action. RESULTS: OBT significantly inhibited cell survival of patient-derived pHGG cells in culture. OBT inhibited tumor growth and extended survival in 2 different orthotopic xenograft models. Mechanistically, OBT induced ER stress through abnormal ROS accumulation. CONCLUSION: Our data demonstrate the utility and feasibility of OBT as a potential therapeutic option for improving the clinical treatment of pHGGs.

18.
Adv Sci (Weinh) ; 7(22): 2002015, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33240762

RESUMEN

Despite decades of research, glioblastoma (GBM) remains invariably fatal among all forms of cancers. The high level of inter- and intratumoral heterogeneity along with its biological location, the brain, are major barriers against effective treatment. Molecular and single cell analysis identifies different molecular subtypes with varying prognosis, while multiple subtypes can reside in the same tumor. Cellular plasticity among different subtypes in response to therapies or during recurrence adds another hurdle in the treatment of GBM. This phenotypic shift is induced and sustained by activation of several pathways within the tumor itself, or microenvironmental factors. In this review, the dynamic nature of cellular shifts in GBM and how the tumor (immune) microenvironment shapes this process leading to therapeutic resistance, while highlighting emerging tools and approaches to study this dynamic double-edged sword are discussed.

19.
Sci Transl Med ; 12(569)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177180

RESUMEN

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG-modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


Asunto(s)
Interleucina-2 , Linfocitos T Reguladores , Animales , Ratones , Nanogeles , Receptores de Antígenos de Linfocitos T , Transducción de Señal
20.
Cell Rep Med ; 1(7): 100101, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33103128

RESUMEN

Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74-0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95-0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70-1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Monitoreo Fisiológico/métodos , Esclerosis Múltiple/diagnóstico , ARN Neoplásico/genética , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Plaquetas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Estudios de Casos y Controles , Progresión de la Enfermedad , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/cirugía , Humanos , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Metástasis de la Neoplasia , Empalme del ARN , ARN Neoplásico/metabolismo , Curva ROC , Análisis de Supervivencia , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA