Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Genes Dev ; 38(7-8): 308-321, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38719541

RESUMEN

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Factor 3 de Transcripción de Unión a Octámeros , Oxidación-Reducción , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Ratones , Diferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos
2.
Trends Immunol ; 45(3): 158-166, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38388231

RESUMEN

Mammalian stem cells govern development, tissue homeostasis, and regeneration. Following years of study, their functions have been delineated with increasing precision. The past decade has witnessed heightened widespread use of stem cell terminology in association with durable T cell responses to infection, antitumor immunity, and autoimmunity. Interpreting this literature is complicated by the fact that descriptions are diverse and criteria for labeling 'stem-like' T cells are evolving. Working under the hypothesis that conceptual frameworks developed for actual stem cells can be used to better evaluate and organize T cells described to have stem-like features, we outline widely accepted properties of stem cells and compare these to different 'stem-like' CD4+ T cell populations.


Asunto(s)
Autoinmunidad , Linfocitos T CD4-Positivos , Animales , Humanos , Memoria Inmunológica , Mamíferos
3.
Proc Natl Acad Sci U S A ; 121(9): e2309153121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386711

RESUMEN

The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.


Asunto(s)
Linfocitos T CD4-Positivos , Células T de Memoria , Animales , Ratones , Memoria Inmunológica , Memoria , Receptores de Interleucina-7 , Transactivadores , Proteinas GADD45 , Antígenos de Diferenciación
4.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36865286

RESUMEN

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we use domain swapping and mutagenesis to study Oct4s reprogramming ability, identifying a redox-sensitive DNA binding domain cysteine residue (Cys48) as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs), but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression and aberrant differentiation. Pou5f1C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.

5.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076925

RESUMEN

Stem-like T cell populations can selectively promote autoimmunity, but the activities that sustain these populations are incompletely understood. Here, we show that T cell-intrinsic loss of the transcription cofactor OCA-B protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to infection. In EAE models driven by antigen re-encounter, OCA-B deletion eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4 + T cells within the CNS of mice with EAE display a memory phenotype and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B T cell-deficiency specifically protects mice from relapse. During remission, OCA-B promotes the expression of Tcf7 , Slamf6 , and Sell in proliferating T cell populations. At relapse, OCA-B loss results in both the accumulation of an immunomodulatory CD4 + T cell population expressing Ccr9 and Bach2 , and the loss of effector gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic stem-like T cells.

6.
Sci Signal ; 16(781): eadd5750, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071732

RESUMEN

The transition between pluripotent and tissue-specific states is a key aspect of development. Understanding the pathways driving these transitions will facilitate the engineering of properly differentiated cells for experimental and therapeutic uses. Here, we showed that during mesoderm differentiation, the transcription factor Oct1 activated developmental lineage-appropriate genes that were silent in pluripotent cells. Using mouse embryonic stem cells (ESCs) with an inducible knockout of Oct1, we showed that Oct1 deficiency resulted in poor induction of mesoderm-specific genes, leading to impaired mesodermal and terminal muscle differentiation. Oct1-deficient cells exhibited poor temporal coordination of the induction of lineage-specific genes and showed inappropriate developmental lineage branching, resulting in poorly differentiated cell states retaining epithelial characteristics. In ESCs, Oct1 localized with the pluripotency factor Oct4 at mesoderm-associated genes and remained bound to those loci during differentiation after the dissociation of Oct4. Binding events for Oct1 overlapped with those for the histone lysine demethylase Utx, and an interaction between Oct1 and Utx suggested that these two proteins cooperate to activate gene expression. The specificity of the ubiquitous Oct1 for the induction of mesodermal genes could be partially explained by the frequent coexistence of Smad and Oct binding sites at mesoderm-specific genes and the cooperative stimulation of mesodermal gene transcription by Oct1 and Smad3. Together, these results identify Oct1 as a key mediator of mesoderm lineage-specific gene induction.


Asunto(s)
Células Madre Embrionarias , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Diferenciación Celular , Sitios de Unión , Mesodermo/metabolismo , Linaje de la Célula
7.
Sci Adv ; 8(24): eabm4982, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704571

RESUMEN

In response to various types of infection, naïve CD4+ T cells differentiate into diverse helper T cell subsets; however, the epigenetic programs that regulate differentiation in response to viral infection remain poorly understood. Demethylation of CpG dinucleotides by Tet methylcytosine dioxygenases is a key component of epigenetic programing that promotes specific gene expression, cellular differentiation, and function. We report that following viral infection, Tet2-deficient CD4+ T cells preferentially differentiate into highly functional germinal center T follicular helper (TFH) cells that provide enhanced help for B cells. Using genome-wide DNA methylation and transcription factor binding analyses, we find that Tet2 coordinates with multiple transcription factors, including Foxo1 and Runx1, to mediate the demethylation and expression of target genes, including genes encoding repressors of TFH differentiation. Our findings establish Tet2 as an important regulator of TFH cell differentiation and reveal pathways that could be targeted to enhance immune responses against infectious disease.


Asunto(s)
Centro Germinal , Células T Auxiliares Foliculares , Diferenciación Celular/genética , Activación de Linfocitos , Linfocitos T Colaboradores-Inductores
8.
Diabetes ; 71(8): 1735-1745, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622068

RESUMEN

Thymic presentation of self-antigens is critical for establishing a functional yet self-tolerant T-cell population. Hybrid peptides formed through transpeptidation within pancreatic ß-cell lysosomes have been proposed as a new class of autoantigens in type 1 diabetes (T1D). While the production of hybrid peptides in the thymus has not been explored, due to the nature of their generation, it is thought to be highly unlikely. Therefore, hybrid peptide-reactive thymocytes may preferentially escape thymic selection and contribute significantly to T1D progression. Using an antibody-peptide conjugation system, we targeted the hybrid insulin peptide (HIP) 2.5HIP toward thymic resident Langerin-positive dendritic cells to enhance thymic presentation during the early neonatal period. Our results indicated that anti-Langerin-2.5HIP delivery can enhance T-cell central tolerance toward cognate thymocytes in NOD.BDC2.5 mice. Strikingly, a single dose treatment with anti-Langerin-2.5HIP during the neonatal period delayed diabetes onset in NOD mice, indicating the potential of antibody-mediated delivery of autoimmune neoantigens during early stages of life as a therapeutic option in the prevention of autoimmune diseases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Anticuerpos , Autoantígenos , Tolerancia Central , Insulina , Insulina Regular Humana , Ratones , Ratones Endogámicos NOD , Péptidos , Timo
9.
Mol Cancer Res ; 20(4): 501-514, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980595

RESUMEN

Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known. We show that in T-acute lymphoblastic leukemia (ALL) cells, GFI1 and IKAROS are transcriptional partners that co-occupy regulatory regions of hallmark T-cell development genes. Transcriptional profiling reveals a subset of genes directly transactivated through the GFI1-IKAROS partnership. Among these is NOTCH3, a key factor in T-ALL pathogenesis. Surprisingly, NOTCH3 expression by GFI1 and IKAROS requires the GFI1 SNAG domain but occurs independent of SNAG-LSD1 binding. GFI1 variants deficient in LSD1 binding fail to activate NOTCH3, but conversely, small molecules that disrupt the SNAG-LSD1 interaction while leaving the SNAG primary structure intact stimulate NOTCH3 expression. These results identify a noncanonical transcriptional control mechanism in T-ALL which supports GFI1-mediated transactivation in partnership with IKAROS and suggest competition between LSD1-containing repressive complexes and others favoring transactivation. IMPLICATIONS: Combinatorial diversity and cooperation between DNA binding proteins and complexes assembled by them can direct context-dependent transcriptional outputs to control cell fate and may offer new insights for therapeutic targeting in cancer.


Asunto(s)
Proteínas de Unión al ADN , Regulación Leucémica de la Expresión Génica , Factor de Transcripción Ikaros , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Factores de Transcripción , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Immunol ; 208(2): 328-337, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34893527

RESUMEN

T cells must shift their metabolism to respond to infections and tumors and to undergo memory formation. The ATP-binding cassette transporter ABCB10 localizes to the mitochondrial inner membrane, where it is thought to export a substrate important in heme biosynthesis and metabolism, but its role in T cell development and activation is unknown. In this article, we use a combination of methods to study the effect of ABCB10 loss in primary and malignantly transformed T cells. Although Abcb10 is dispensable for development of both CD4+ and CD8+ T cells, it is required for expression of specific cytokines in CD4+, but not CD8+, T cells activated in vitro. These defects in cytokine expression are magnified on repeated stimulation. In vivo, CD8+ cells lacking ABCB10 expand more in response to viral infection than their control counterparts, while CD4+ cells show reductions in both number and percentage. CD4+ cells lacking ABCB10 show impairment in Ag-specific memory formation and recall responses that become more severe with time. In malignant human CD4+ Jurkat T cells, we find that CRISPR-mediated ABCB10 disruption recapitulates the same cytokine expression defects upon activation as observed in primary mouse T cells. Mechanistically, ABCB10 deletion in Jurkat T cells disrupts the ability to switch to aerobic glycolysis upon activation. Cumulatively, these results show that ABCB10 is selectively required for specific cytokine responses and memory formation in CD4+ T cells, suggesting that targeting this molecule could be used to mitigate aberrant T cell activation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Linfocitos T CD4-Positivos/inmunología , Citocinas/biosíntesis , Memoria Inmunológica/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Sistemas CRISPR-Cas/genética , Línea Celular , Citocinas/inmunología , Glucólisis/fisiología , Humanos , Memoria Inmunológica/genética , Células Jurkat , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33295943

RESUMEN

The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Páncreas/patología , Linfocitos T/inmunología , Transactivadores/metabolismo , Transcripción Genética , Alelos , Secuencia de Aminoácidos , Animales , Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Cruzamientos Genéticos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Células Germinativas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Ganglios Linfáticos/metabolismo , Activación de Linfocitos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ovalbúmina , Páncreas/metabolismo , Péptidos/farmacología , Receptores de Antígenos de Linfocitos T/metabolismo , Bazo/patología , Transactivadores/deficiencia
12.
Cell Metab ; 31(2): 284-300.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31813825

RESUMEN

Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.


Asunto(s)
Adenoma/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Pirúvico/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Drosophila , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
13.
JCI Insight ; 4(22)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31600171

RESUMEN

To develop a systems biology model of fibrosis progression within the human lung we performed RNA sequencing and microRNA analysis on 95 samples obtained from 10 idiopathic pulmonary fibrosis (IPF) and 6 control lungs. Extent of fibrosis in each sample was assessed by microCT-measured alveolar surface density (ASD) and confirmed by histology. Regulatory gene expression networks were identified using linear mixed-effect models and dynamic regulatory events miner (DREM). Differential gene expression analysis identified a core set of genes increased or decreased before fibrosis was histologically evident that continued to change with advanced fibrosis. DREM generated a systems biology model (www.sb.cs.cmu.edu/IPFReg) that identified progressively divergent gene expression tracks with microRNAs and transcription factors that specifically regulate mild or advanced fibrosis. We confirmed model predictions by demonstrating that expression of POU2AF1, previously unassociated with lung fibrosis but proposed by the model as regulator, is increased in B lymphocytes in IPF lungs and that POU2AF1-knockout mice were protected from bleomycin-induced lung fibrosis. Our results reveal distinct regulation of gene expression changes in IPF tissue that remained structurally normal compared with moderate or advanced fibrosis and suggest distinct regulatory mechanisms for each stage.


Asunto(s)
Regulación de la Expresión Génica/genética , Fibrosis Pulmonar Idiopática , Pulmón , Transcriptoma/genética , Anciano , Animales , Progresión de la Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Transactivadores/genética , Transactivadores/metabolismo , Microtomografía por Rayos X
14.
Exp Hematol ; 76: 38-48.e2, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31295506

RESUMEN

A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/fisiología , Factor 1 de Transcripción de Unión a Octámeros/fisiología , Animales , Médula Ósea/patología , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/genética , Factor de Transcripción CDX2/biosíntesis , Factor de Transcripción CDX2/genética , Transformación Celular Neoplásica/genética , Islas de CpG , Metilación de ADN , Progresión de la Enfermedad , Fluorouracilo/toxicidad , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Experimental/genética , Leucemia Experimental/prevención & control , Leucemia Mieloide Aguda/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones Endogámicos C57BL , Factor 1 de Transcripción de Unión a Octámeros/deficiencia , Proteínas de Fusión Oncogénica/fisiología , Regiones Promotoras Genéticas , Quimera por Radiación
15.
J Neuroinflammation ; 16(1): 133, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31266507

RESUMEN

BACKGROUND: Treatments for autoimmune diseases aim to dampen autoreactivity while preserving normal immune function. In CD4+ T cells, the transcription factor Oct1/Pou2f1 is a dispensable transcription factor for T cell development and response to primary infection, but promotes expression of target genes, including Il2 and Ifng, under conditions of antigen reencounter. As a result, they are more strongly expressed upon secondary stimulation. Such repeated antigen encounters occur in memory recall responses, in autoimmunity where self-antigen can be recognized multiple times, and in chronic infection where foreign antigen is persistent. Based on these previous findings, we hypothesized that Oct1 loss would protect animals from autoimmunity but maintain normal responses to pathogens in the CNS. OBJECTIVE: We used a conditional mouse Oct1 (Pou2f1) allele and a CD4-Cre driver to determine the effect of T cell-specific Oct1 loss on autoimmune- and viral-induced neuroinflammation using an autoantigen-driven EAE model of autoimmunity and a JHMV model of viral infection. RESULTS: Oct1 conditional deletion mitigated clinical scores and reduced infiltrating T cells and cytokine production in the EAE model. Consistently, Oct1-deficient CD4+ T cells stimulated in vitro showed increased expression of markers associated with T cell anergy, particularly in the absence of co-stimulatory signals. In contrast, anti-viral T cell effector functions are intact in the absence of Oct1, with no changes in neuroinflammation, infiltrating T cells or cytokine production. CONCLUSION: Our findings uncover a significant difference between the effect of Oct1 loss on autoimmune and anti-pathogen responses, which potentially could be exploited for therapeutic benefit.


Asunto(s)
Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Mediadores de Inflamación/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/deficiencia , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/inmunología , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/inmunología
16.
PLoS Genet ; 15(5): e1007687, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31059499

RESUMEN

The transcription factor Oct1/Pou2f1 promotes poised gene expression states, mitotic stability, glycolytic metabolism and other characteristics of stem cell potency. To determine the effect of Oct1 loss on stem cell maintenance and malignancy, we deleted Oct1 in two different mouse gut stem cell compartments. Oct1 deletion preserved homeostasis in vivo and the ability to establish organoids in vitro, but blocked the ability to recover from treatment with dextran sodium sulfate, and the ability to maintain organoids after passage. In a chemical model of colon cancer, loss of Oct1 in the colon severely restricted tumorigenicity. In contrast, loss of one or both Oct1 alleles progressively increased tumor burden in a colon cancer model driven by loss-of-heterozygosity of the tumor suppressor gene Apc. The different outcomes are consistent with prior findings that Oct1 promotes mitotic stability, and consistent with differentially expressed genes between the two models. Oct1 ChIPseq using HCT116 colon carcinoma cells identifies target genes associated with mitotic stability, metabolism, stress response and malignancy. This set of gene targets overlaps significantly with genes differentially expressed in the two tumor models. These results reveal that Oct1 is selectively required for recovery after colon damage, and that Oct1 has potent effects in colon malignancy, with outcome (pro-oncogenic or tumor suppressive) dictated by tumor etiology.


Asunto(s)
Carcinogénesis/genética , Colon/metabolismo , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Factor 1 de Transcripción de Unión a Octámeros/genética , Animales , Azoximetano/administración & dosificación , Carcinogénesis/metabolismo , Carcinogénesis/patología , Colon/efectos de los fármacos , Colon/patología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Sulfato de Dextran/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Integrasas/genética , Integrasas/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones , Ratones Noqueados , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor 1 de Transcripción de Unión a Octámeros/deficiencia , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneración , Transducción de Señal , Análisis de Supervivencia , Tamoxifeno/administración & dosificación
17.
Stem Cells Dev ; 27(24): 1693-1701, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30319048

RESUMEN

The histone chaperone facilitates chromatin transactions (FACT) is associated with nuclear processes, including DNA transcription, replication, and repair. We previously showed that FACT is transiently recruited to pluripotency-associated target genes by newly bound Oct4. In this study, we tested the effects of FACT depletion by knockout or chemical inhibition on the induction and maintenance of pluripotency. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated deletion of the FACT subunit Spt16 did not affect the viability or proliferation of fibroblasts but blocked their ability to form induced pluripotent stem cells. Similarly, a small molecule inhibitor of FACT blocked the induction of pluripotency at an early step in reprogramming, without affecting the viability, proliferation, undifferentiated state, or the expression of core pluripotency genes. Notably, trypsinization and passage of pluripotent cells transiently reintroduced a requirement for FACT. Although FACT has been considered to be an essential transcription elongation factor, these results contribute to the emerging view that it instead promotes transitions between stable chromatin states, including during reprogramming to pluripotency.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Células 3T3 , Animales , Células Cultivadas , Cromatina/metabolismo , Ratones , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
18.
Mol Cancer Res ; 16(3): 439-452, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29330289

RESUMEN

The tumor suppressor BRCA1 regulates the DNA damage response (DDR) and other processes that remain incompletely defined. Among these, BRCA1 heterodimerizes with BARD1 to ubiquitylate targets via its N-terminal E3 ligase activity. Here, it is demonstrated that BRCA1 promotes oxidative metabolism by degrading Oct1 (POU2F1), a transcription factor with proglycolytic and tumorigenic effects. BRCA1 E3 ubiquitin ligase mutation skews cells toward a glycolytic metabolic profile while elevating Oct1 protein. CRISPR-mediated Oct1 deletion reverts the glycolytic phenotype. RNA sequencing (RNAseq) confirms deregulation of metabolic genes downstream of Oct1. BRCA1 mediates Oct1 ubiquitylation and degradation, and mutation of two ubiquitylated Oct1 lysines insulates the protein against BRCA1-mediated destabilization. Oct1 deletion in MCF-7 breast cancer cells does not perturb growth in standard culture, but inhibits growth in soft agar and xenograft assays. In primary breast cancer clinical specimens, Oct1 protein levels correlate positively with tumor aggressiveness and inversely with BRCA1. These results identify BRCA1 as an Oct1 ubiquitin ligase that catalyzes Oct1 degradation to promote oxidative metabolism and restrict tumorigenicity. Mol Cancer Res; 16(3); 439-52. ©2018 AACR.


Asunto(s)
Proteína BRCA1/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína BRCA1/genética , Metabolismo de los Hidratos de Carbono , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Metabolómica/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID
19.
Elife ; 62017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537559

RESUMEN

Embryonic stem cells co-express Oct4 and Oct1, a related protein with similar DNA-binding specificity. To study the role of Oct1 in ESC pluripotency and transcriptional control, we constructed germline and inducible-conditional Oct1-deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal and growth but manifest defects upon differentiation. They fail to form beating cardiomyocytes, generate neurons poorly, form small, poorly differentiated teratomas, and cannot generate chimeric mice. Upon RA-mediated differentiation, Oct1-deficient cells induce lineage-appropriate developmentally poised genes poorly while lineage-inappropriate genes, including extra-embryonic genes, are aberrantly expressed. In ESCs, Oct1 co-occupies a specific set of targets with Oct4, but does not occupy differentially expressed developmental targets. Instead, Oct1 occupies these targets as cells differentiate and Oct4 declines. These results identify a dynamic interplay between Oct1 and Oct4, in particular during the critical window immediately after loss of pluripotency when cells make the earliest developmental fate decisions.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/fisiología , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Transcripción Genética , Animales , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
20.
Elife ; 52016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27661449

RESUMEN

PAS domain containing protein kinase (Pask) is an evolutionarily conserved protein kinase implicated in energy homeostasis and metabolic regulation across eukaryotic species. We now describe an unexpected role of Pask in promoting the differentiation of myogenic progenitor cells, embryonic stem cells and adipogenic progenitor cells. This function of Pask is dependent upon its ability to phosphorylate Wdr5, a member of several protein complexes including those that catalyze histone H3 Lysine 4 trimethylation (H3K4me3) during transcriptional activation. Our findings suggest that, during myoblast differentiation, Pask stimulates the conversion of repressive H3K4me1 to activating H3K4me3 marks on the promoter of the differentiation gene myogenin (Myog) via Wdr5 phosphorylation. This enhances accessibility of the MyoD transcription factor and enables transcriptional activation of the Myog promoter to initiate muscle differentiation. Thus, as an upstream kinase of Wdr5, Pask integrates signaling cues with the transcriptional network to regulate the differentiation of progenitor cells.


Asunto(s)
Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Desarrollo de Músculos/fisiología , Músculos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Musculares/fisiología , Músculo Esquelético , Músculos/lesiones , Proteína MioD/metabolismo , Mioblastos/patología , Miogenina/genética , Miogenina/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Células Madre , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA