Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 19(6): e0303285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917154

RESUMEN

Typhoid fever, caused by Salmonella enterica serovar typhi, presents a substantial global health threat, particularly in regions with limited healthcare infrastructure. The rise of multidrug-resistant strains of S. typhi exacerbates this challenge, severely compromising conventional treatment efficacy due to over activity of efflux pumps. In our study, a comprehensive exploration of two fundamental aspects to combat MDR in S. typhi is carried out; i.e. employing advanced bioinformatics analyses and AlphaFold AI, We successfully identified and characterised a putative homologue, ABC-TPA, reminiscent of the P-glycoprotein (P-gp) known for its role in multidrug resistance in diverse pathogens. This discovery provides a critical foundation for understanding the potential mechanisms driving antibiotic resistance in S. typhi. Furthermore, employing computational methodologies, We meticulously assessed the potential of lignans, specifically Schisandrin A, B, and C, as promising Efflux Pump Inhibitors (EPIs) against the identified P-gp homologue in S. typhi. Noteworthy findings revealed robust binding interactions of Schisandrin A and B with the target protein, indicating substantial inhibitory capabilities. In contrast, Schisandrin C exhibited instability, showing varied effectiveness among the evaluated lignans. Pharmacokinetics and toxicity predictions underscored the favourable attributes of Schisandrin A, including prolonged action duration. Furthermore, high systemic stability and demanished toxicity profile of SA and SB present their therapeutic efficacy against MDR. This comprehensive investigation not only elucidates potential therapeutic strategies against MDR strains of S. typhi but also highlights the relevance of computational approaches in identifying and evaluating promising candidates. These findings lay a robust foundation for future empirical studies to address the formidable challenges antibiotic resistance poses in this clinically significant infectious diseases.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Lignanos , Salmonella typhi , Salmonella typhi/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Lignanos/farmacología , Lignanos/química , Antibacterianos/farmacología , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Biología Computacional/métodos
2.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771180

RESUMEN

Wilson's disease causes copper accumulation in the liver and extrahepatic organs. The available therapies aim to lower copper levels by various means. However, a potent drug that can repair the damaged liver and brain tissue is needed. Silymarin has hepatoprotective, antioxidant, and cytoprotective properties. However, poor oral bioavailability reduces its efficacy. In this study, a "thin film hydration method" was used for synthesizing silymarin-encapsulated liposome nanoparticles (SLNPs) and evaluated them against copper toxicity, associated liver dysfunction and neurobehavioral abnormalities in Wistar rats. After copper toxicity induction, serological and behavioral assays were conducted to evaluate treatment approaches. Histological examination of the diseased rats revealed severe hepatocyte necrosis and neuronal vacuolation. These cellular degenerations were mild in rats treated with SLNPs and a combination of zinc and SLNPs (ZSLNPs). SLNPs also decreased liver enzymes and enhanced rats' spatial memory significantly (p = 0.006) in the diseased rats. During forced swim tests, SLNPs treated rats exhibited a 60-s reduction in the immobility period, indicating reduced depression. ZSLNPs were significantly more effective than traditional zinc therapy in decreasing the immobility period (p = 0.0008) and reducing liver enzymes, but not in improving spatial memory. Overall, SLNPs enhanced oral silymarin administration and managed copper toxicity symptoms.


Asunto(s)
Degeneración Hepatolenticular , Silimarina , Ratas , Animales , Ratas Wistar , Silimarina/uso terapéutico , Cobre/farmacología , Liposomas/farmacología , Hígado , Degeneración Hepatolenticular/tratamiento farmacológico , Zinc/farmacología , Zinc/uso terapéutico
3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555575

RESUMEN

Antibacterial restorative materials against caries-causing bacteria are highly preferred among high-risk patients, such as the elderly, and patients with metabolic diseases such as diabetes. This study aimed to enhance the antibacterial potential of resin composite with Magnesium-doped Zinc oxide (Mg-doped ZnO) nanoparticles (NPs) and to look for their effectiveness in the alloxan-induced diabetic model. Hexagonal Mg-doped ZnO NPs (22.3 nm diameter) were synthesized by co-precipitation method and characterized through ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. The Mg-doped ZnO NPs (1, 2.5 and 5% w/w) were then evaluated for antibacterial activity using a closed system in vitro biofilm model. Significant enhancement in the antibacterial properties was observed in composites with 1% Mg-doped ZnO compared to composites with bare ZnO reinforced NPs (Streptococcus mutans, p = 0.0005; Enterococcus faecalis, p = 0.0074, Saliva microcosm, p < 0.0001; Diabetic Saliva microcosm, p < 0.0001). At 1−2.5% Mg-doped ZnO NPs concentration, compressive strength and biocompatibility of composites were not affected. The pH buffering effect was also achieved at these concentrations, hence not allowing optimal conditions for the anaerobic bacteria to grow. Furthermore, composites with Mg-doped ZnO prevented secondary caries formation in the secondary caries model of alloxan-induced diabetes. Therefore, Mg-doped ZnO NPs are highly recommended as an antibacterial agent for resin composites to avoid biofilm and subsequent secondary caries formation in high-risk patients.


Asunto(s)
Diabetes Mellitus , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Humanos , Anciano , Óxido de Zinc/farmacología , Óxido de Zinc/química , Zinc , Aloxano , Magnesio/farmacología , Óxido de Magnesio/farmacología , Óxido de Magnesio/uso terapéutico , Susceptibilidad a Caries Dentarias , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Pruebas de Sensibilidad Microbiana
4.
Materials (Basel) ; 15(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36363419

RESUMEN

Biofilm formation in the resin-composite interface is a major challenge for resin-based dental composites. Using doped z nanoparticles (NPs) to enhance the antibacterial properties of resin composites can be an effective approach to prevent this. The present study focused on the effectiveness of Selenium-doped ZnO (Se/ZnO) NPs as an antibacterial nanofiller in resin composites and their impact on their mechanical properties. Pristine and Se/ZnO NPs were synthesized by the mechanochemical method and confirmed through UV-Vis Spectroscopy, FTIR (Fourier Transform Infrared) analysis, X-ray Diffraction (XRD) crystallography, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Zeta analysis. The resin composites were then modified by varying concentrations of pristine and Se/ZnO NPs. A single species (S. mutans and E. faecalis) and a saliva microcosm model were utilized for antibacterial analysis. Hemolytic assay and compressive strength tests were also performed to test the modified composite resin's cytotoxicity and mechanical strength. When incorporated into composite resin, 1% Se/ZnO NPs showed higher antibacterial activity, biocompatibility, and higher mechanical strength when compared to composites with 1% ZnO NPs. The Se/ZnO NPs has been explored for the first time as an efficient antibacterial nanofiller for resin composites and showed effectiveness at lower concentrations, and hence can be an effective candidate in preventing secondary caries by limiting biofilm formation.

5.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364007

RESUMEN

Resin composites have been widely used in dental restoration. However, polymerization shrinkage and resultant bacterial microleakage are major limitations that may lead to secondary caries. To overcome this, a new type of antibacterial resin composite containing ciprofloxacin-loaded silver nanoparticles (CIP-AgNPs) were synthesized. The chemical reduction approach successfully produced CIP-AgNPs, as demonstrated by FTIR, zeta potential, scanning electron microscopy, and ultraviolet-visible (UV-vis) spectroscopy. CIP-AgNPs were added to resin composites and the antibacterial activity of the dental composite discs were realized against Enterococcus faecalis, Streptococcus mutans, and the Saliva microcosm. The biocompatibility of modified resin composites was assessed and mechanical testing of modified dental composites was also performed. The results indicated that the antibacterial activity and compressive strength of resin composites containing CIP-AgNPs were enhanced compared to the control group. They were also biocompatible when compared to resin composites containing AgNPs. In short, these results established strong ground application for CIP-AgNP-modified dental composite resins.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Plata/farmacología , Plata/química , Ciprofloxacina/farmacología , Streptococcus mutans , Antibacterianos/farmacología , Antibacterianos/química , Resinas Compuestas/farmacología , Resinas Compuestas/química , Ensayo de Materiales , Nanopartículas/química
6.
Polymers (Basel) ; 14(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956658

RESUMEN

Micro-crack formation and resultant bacterial infiltration are major causes of secondary caries formation in dental resin-based composite restorations. Improving dental resin composites' mechanical and biological properties using highly bendable nanoparticles (NPs) can resolve this issue. This study aims to develop novel Diethylaminoethyl (DEAE)-Dextran silver nanoparticles (AgNPs) and subsequently modify composite resins with these NPs to enhance their mechanical and antibacterial properties. DEAE-Dextran AgNPs were successfully synthesized using a chemical reduction method that was confirmed with the help of ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Zeta potential, and energy-dispersive X-ray spectroscopy (EDS). Antibacterial activity of a composite disc with DEAE-Dextran AgNPs was tested against Streptococcus mutans, Enterococcus faecalis, and oral microcosm. The composite discs prepared with DEAE-Dextran AgNPs exhibited excellent antibacterial activity compared with composite resin reinforced by simple AgNPs (p < 0.05). Mechanical properties were significantly enhanced by adding DEAE-Dextran into composite resin (p < 0.05). Moreover, unlike AgNPs, DEAE-Dextran AgNPs were found to be less hemolytic. The results establish strong ground applications for DEAE-Dextran-modified dental composite resins in restorative dental applications.

7.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835916

RESUMEN

Metallic nanoparticles, such as gold nanoparticles (AuNPs), have been extensively studied as drug delivery systems for various therapeutic applications. However, drug-loaded-AuNPs have been rarely explored in vivo for their effect on bacteria residing inside tissues. Ciprofloxacin (CIP) is a second-generation fluoroquinolone with a broad-spectrum of antibiotic properties devoid of developing bacteria resistance. This research is focused on the synthesis and physical characterization of Ciprofloxacin-loaded gold nanoparticles (CIP-AuNPs) and their effect on the colonization of Enterococcus faecalis in the liver and kidneys of mice. The successfully prepared CIP-AuNPs were stable and exerted enhanced in vitro antibacterial activity against E. faecalis compared with free CIP. The optimized CIP-AuNPs were administered (500 µg/Kg) once a day via tail vein to infected mice for eight days and were found to be effective in eradicating E. faecalis from the host tissues. Moreover, unlike CIP, CIP-AuNPs were non-hemolytic. In summary, this study demonstrated that CIP-AuNPs are promising and biocompatible alternative therapeutics for E.-faecalis-induced infections resistant to conventional drugs (e.g., beta-lactams and vancomycin) and should be further investigated.

8.
Nanomaterials (Basel) ; 10(9)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906828

RESUMEN

Multidrug resistance (MDR) has been a potentiator for the exploration of antibiotics. Nano drug delivery systems have opened new avenues to overcome this challenge. Although antibacterial nanocarriers are extensively realized, their effect on the bacteria residing inside the tissues and their toxicity is rarely explored. This study investigated the effects of flavonoid coated gold nanoparticles (FAuNPs) on the colonization of Enterococcus faecalis in the mouse liver and kidneys. Flavonoids were extracted from the leaves of Berberis lycium Royle and used to stabilize gold following a green synthesis approach. FAuNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FAuNPs showed significantly higher reduction in bacterial counts in in-vitro and in-vivo in mice organs as compared to the free flavonoids owing to their biocompatibility and effectiveness.

9.
Molecules ; 25(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824118

RESUMEN

Pseudomonas aeruginosa is a Gram-negative pathogenic bacterium that is present commonly in soil and water and is responsible for causing septic shock, pneumonia, urinary tract and gastrointestinal infections, etc. The multi-drug resistance (MDR) phenomenon has increased dramatically in past years and is now considered a major threat globally, so there is an urgent need to develop new strategies to overcome drug resistance by P. aeruginosa. In P. aeruginosa, a major factor of drug resistance is associated to the formation of biofilms by the LasR enzyme, which regulates quorum sensing and has been reported as a new therapeutic target for designing novel antibacterial molecules. In this study, virtual screening and molecular docking were performed against the ligand binding domain (LBD) of LasR by employing a pharmacophore hypothesis for the screening of 2373 FDA-approved compounds to filter top-scoring hit compounds. Six inhibitors out of 2373 compounds were found to have binding affinities close to that of known LasR inhibitors. The binding modes of these compounds to the binding site in LasR-LBD were analyzed to identify the key interactions that contribute to the inhibition of LasR activity. Then, 50 ns simulations of top hit compounds were performed to elucidate the stability of their binding conformations with the LasR-LBD. This study, thus concluded that sulfamerazine showed the highest binding affinity for the LasR-LBD binding pocket exhibiting strong inhibitory binding interactions during molecular dynamics (MD) simulation.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Biopelículas/crecimiento & desarrollo , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Preparaciones Farmacéuticas/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Transactivadores/antagonistas & inhibidores , Biopelículas/efectos de los fármacos , Simulación por Computador , Aprobación de Drogas , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Estados Unidos , United States Food and Drug Administration
10.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041149

RESUMEN

Plant phytochemicals have potential decontaminating properties, however, their role in the amelioration of hydrophobic water filtration membranes have not been elucidated yet. In this work, phytochemicals (i.e., cannabinoids (C) and terpenes (T) from C. sativa) were revealed for their antibacterial activity against different Gram-positive and Gram-negative bacteria. As such, a synergistic relationship was observed between the two against all strains. These phytochemicals individually and in combination were used to prepare polyethersulfone (PES) hybrid membranes. Membrane characterizations were carried out using scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy. Moreover, contact angle, water retention, surface roughness, mechanical testing, and X-ray florescence analysis were also carried out. According to results, the CT-PES hybrid membrane exhibited the lowest contact angle (40°), the highest water retention (70%), and smallest average pore size (0.04 µm). The hybrid membrane also exhibited improved water flux with no surface leaching. Quantitative bacterial decline analysis of the CT-PES hybrid membranes confirmed an effective antibacterial performance against Gram-positive and Gram-negative bacteria. The results of this study established cannabinoids and terpenes as an inexpensive solution for PES membrane surface modification. These hybrid membranes can be easily deployed at an industrial scale for water filtration purposes.


Asunto(s)
Antibacterianos/farmacología , Cannabinoides/farmacología , Terpenos/farmacología , Antibacterianos/química , Cannabinoides/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Membranas Artificiales , Microscopía Electrónica de Rastreo , Fitoquímicos/química , Fitoquímicos/farmacología , Polímeros , Sulfonas , Terpenos/química , Purificación del Agua/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA