Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124379, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692106

RESUMEN

Metal halide perovskites are promising optoelectronic materials due to their outstanding luminescent properties. However, the instability of perovskites has long been the bottleneck to their practical applications. Here Cs4PbBr6 nanocrystals based glass composite (Cs4PbBr6 NCs@glass) are successfully prepared, which displays green emission color (520 nm), narrow bandwidth (23 nm) and a near-unity photoluminescence quantum yield (PLQY). The H2O molecules permeating in the lattice of Cs4PbBr6 were found to be a crucial role in the subband energy emission. The Cs4PbBr6 NCs@glass has excellent emission stability; maintains 93 % of initial PL intensity after ultraviolet light irradiation for over 5000 h. In addition, by adjusting the halogen content, we have achieved tunable emission color from blue (450 nm) to green (520 nm) and red (670 nm) on Cs4PbX6 NCs@glass (X = Cl, Br, I), which covers up to 127 % of the National Television Systems Board (NTSC) standard system. Our finding indicates the commercial applications of perovskite materials in lighting and display.

2.
Front Microbiol ; 13: 1017804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267178

RESUMEN

Slow transit constipation (STC) is the most common type of functional constipation. Drugs with good effects and few side effects are urgently needed form the treatment of STC. Cymbopogon citratus (DC.) Stapf (CC) is an important medicinal and edible spice plant. The wide range of biological activities suggested that CC may have laxative effects, but thus far, it has not been reported. In this study, the loperamide-induced STC mouse model was used to evaluate the laxative effect of the aqueous extract of CC (CCAE), and the laxative mechanism was systematically explored from the perspectives of the enteric nervous system (ENS), neurotransmitter secretion, gastrointestinal motility factors, intestinal inflammation, gut barrier and gut microbiota. The results showed that CCAE not only decreased the serum vasoactive intestinal polypeptide (VIP), induced nitric oxide synthases (iNOS), and acetylcholinesterase (AchE) in STC mice but also increased the expression of gastrointestinal motility factors in colonic interstitial cells of Cajal (ICCs) and smooth muscle cells (SMCs), thereby significantly shortening the defecation time and improving the gastrointestinal transit rate. The significantly affected gastrointestinal motility factors included stem cell factor receptor (c-Kit), stem cell factor (SCF), anoctamin 1 (Ano1), ryanodine receptor 3 (RyR3), smooth muscle myosin light chain kinase (smMLCK) and Connexin 43 (Cx43). Meanwhile, CCAE could repair loperamide-induced intestinal inflammation and intestinal barrier damage by reducing the expression of the pro-inflammatory factor IL-1ß and increasing the expression of the anti-inflammatory factor IL-10, chemical barrier (Muc-2) and mechanical barrier (Cldn4, Cldn12, Occludin, ZO-1, and ZO-2). Interestingly, CCAE could also partially restore loperamide-induced gut microbial dysbiosis in various aspects, such as microbial diversity, community structure and species composition. Importantly, we established a complex but clear network between gut microbiota and host parameters. Muribaculaceae, Lachnospiraceae and UCG-010 showed the most interesting associations with the laxative phenotypes; several other specific taxa showed significant associations with serum neurotransmitters, gastrointestinal motility factors, intestinal inflammation, and the gut barrier. These findings suggested that CCAE might promote intestinal motility by modulating the ENS-ICCs-SMCs network, intestinal inflammation, intestinal barrier and gut microbiota. CC may be an effective and safe therapeutic choice for STC.

3.
Sci Rep ; 10(1): 6697, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317707

RESUMEN

Silky chicken is a breed of chickens with black skin and slow growth rate used in Chinese traditional medicine, whereas Arbor Acres broiler is a well-known commercial breed in the poultry industry, it is featured by a large size, rapid-growth rate, high feed-conversion rate and strong adaptability. The difference in their rate of growth may be primarily related to different mechanism for glucose metabolism. Here we compared the insulin sensitivity of the two breeds; we investigated the temporal changes (at 0 min, 120 min and 240 min) of serum insulin and other biochemical parameters and determined the spatio-temporal changes of gene mRNA abundance in response to exogenous insulin (80 µg/kg body weight). The results indicated that: (1) Silky chickens showed stronger blood glucose recovery than broilers in the insulin resistance test. (2) The serum urea level in Silky chickens was twice of broilers; exogenous insulin significantly up-regulated serum uric acid level in Silky fowls in a time-dependent manner and increased serum cholesterol content at 120 min. (3) Two breeds showed distinctly different temporal changed in serum insulin in response to exogenous insulin stimulation. The fasting serum insulin concentration of broilers was three-fold of Silky chickens at the basal state; it decreased significantly after insulin injection and the levels at 120 min and 240 min of broilers were only 23% (P < 0.01) and 14% (P < 0.01) of the basal state, respectively. Whereas the serum insulin content in Silky chickens showed stronger recovery, and the 240 min level was close to the 0 min level. (4) GLUT2, GLUT12, neuropeptide Y and insulin receptor (IR) were predominantly expressed in the liver, pectoralis major, olfactory bulb and pancreas, respectively, where these genes presented stronger insulin sensitivity. In addition, the IR mRNA level was strongly positively with the GLUT12 level. In conclusion, our findings suggested that Silky chickens have a stronger ability to regulate glucose homeostasis than broilers, owing to their higher IR levels in the basal state, stronger serum insulin homeostasis and candidate genes functioning primarily in their predominantly expressed tissue in response to exogenous insulin.


Asunto(s)
Glucemia/metabolismo , Pollos/sangre , Pollos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/farmacología , Animales , Cruzamiento , Femenino , Estudios de Asociación Genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Insulina/sangre , Resistencia a la Insulina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3787-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26332376

RESUMEN

Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p < 0.05) and hepatic tissues (p < 0.05) at 42 d-old were affected by the type of dietary fats in 5% level, while not in abdominal fat tissues. The expression of mt-ND2 in hepatic tissues was down-regulated with chicken age (p < 0.01). The interactive effect of dietary fat types with chicken age (p < 0.05) was significant on mt-ND2 mRNA level. The study demonstrated that mt-ND2 gene was extensively expressed in tissues, and the expression was affected by dietary fat types and chicken age.


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , NADH Deshidrogenasa/genética , Animales , Proteínas Aviares/metabolismo , Pollos/metabolismo , Grasas de la Dieta/administración & dosificación , Femenino , Expresión Génica , Hígado/enzimología , Mitocondrias Hepáticas/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/enzimología , NADH Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA