Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982663

RESUMEN

We investigated the expression and biological function of retinoic acid inducible gene I (RIG-I) in esophageal squamous cell carcinoma (ESCC). Materials and methods: An immunohistochemical analysis was performed on 86 pairs of tumor tissue and adjacent normal tissue samples of patients with ESCC. We generated RIG-I-overexpressing ESCC cell lines KYSE70 and KYSE450, and RIG-I- knockdown cell lines KYSE150 and KYSE510. Cell viability, migration and invasion, radioresistance, DNA damage, and cell cycle were evaluated using CCK-8, wound-healing and transwell assay, colony formation, immunofluorescence, and flow cytometry and Western blotting, respectively. RNA sequencing was performed to determine the differential gene expression between controls and RIG-I knockdown. Tumor growth and radioresistance were assessed in nude mice using xenograft models. RIG-I expression was higher in ESCC tissues compared with that in matched non-tumor tissues. RIG-I overexpressing cells had a higher proliferation rate than RIG-I knockdown cells. Moreover, the knockdown of RIG-I slowed migration and invasion rates, whereas the overexpression of RIG-I accelerated migration and invasion rates. RIG-I overexpression induced radioresistance and G2/M phase arrest and reduced DNA damage after exposure to ionizing radiations compared with controls; however, it silenced the RIG-I enhanced radiosensitivity and DNA damage, and reduced the G2/M phase arrest. RNA sequencing revealed that the downstream genes DUSP6 and RIG-I had the same biological function; silencing DUSP6 can reduce the radioresistance caused by the overexpression of RIG-I. RIG-I knockdown depleted tumor growth in vivo, and radiation exposure effectively delayed the growth of xenograft tumors compared with the control group. RIG-I enhances the progression and radioresistance of ESCC; therefore, it may be a new potential target for ESCC-targeted therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Fosfatasa 6 de Especificidad Dual/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Receptores de Ácido Retinoico/metabolismo
2.
Chin Med J (Engl) ; 134(21): 2535-2543, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34748524

RESUMEN

BACKGROUND: It is crucial to differentiate accurately glioma recurrence and pseudoprogression which have entirely different prognosis and require different treatment strategies. This study aimed to assess the diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as a tool for distinguishing glioma recurrence and pseudoprogression. METHODS: According to particular criteria of inclusion and exclusion, related studies up to May 1, 2019, were thoroughly searched from several databases including PubMed, Embase, Cochrane Library, and Chinese biomedical databases. The quality assessment of diagnostic accuracy studies was applied to evaluate the quality of the included studies. By using the "mada" package in R, the heterogeneity, overall sensitivity, specificity, and diagnostic odds ratio were calculated. Moreover, funnel plots were used to visualize and estimate the publication bias in this study. The area under the summary receiver operating characteristic (SROC) curve was computed to display the diagnostic efficiency of DCE-MRI. RESULTS: In the present meta-analysis, a total of 11 studies covering 616 patients were included. The results showed that the pooled sensitivity, specificity, and diagnostic odds ratio were 0.792 (95% confidence interval [CI] 0.707-0.857), 0.779 (95% CI 0.715-0.832), and 16.219 (97.5% CI 9.123-28.833), respectively. The value of the area under the SROC curve was 0.846. In addition, the SROC curve showed high sensitivities (>0.6) and low false positive rates (<0.5) from most of the included studies, which suggest that the results of our study were reliable. Furthermore, the funnel plot suggested the existence of publication bias. CONCLUSIONS: While the DCE-MRI is not the perfect diagnostic tool for distinguishing glioma recurrence and pseudoprogression, it was capable of improving diagnostic accuracy. Hence, further investigations combining DCE-MRI with other imaging modalities are required to establish an efficient diagnostic method for glioma patients.


Asunto(s)
Glioma , Recurrencia Local de Neoplasia , Glioma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia/diagnóstico por imagen , Curva ROC , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA