Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Biotechnol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367093

RESUMEN

The tumor microenvironment can inhibit the efficacy of cancer therapies through mechanisms such as poor trafficking and exhaustion of immune cells. Here, to address this challenge, we exploited the safety, tumor tropism and ease of genetic manipulation of non-pathogenic Escherichia coli (E. coli) to deliver key immune-activating cytokines to tumors via surface display on the outer membrane of E. coli K-12 DH5α. Non-pathogenic E. coli expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and natural killer (NK) cell-dependent immune responses and suppressed tumor progression in immune-competent colorectal carcinoma and melanoma mouse models. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting chimeric antigen receptor (CAR) NK cells and enhance their trafficking into tumors, which extended survival in an NK cell treatment-resistant mesothelioma xenograft model by enhancing TNF signaling and upregulating NK activation markers. Our live bacteria-based immunotherapeutic system safely and effectively induces potent anti-tumor responses in treatment-resistant solid tumors, motivating further evaluation of this approach in the clinic.

2.
Small ; : e2402802, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375971

RESUMEN

In the past decade, cancer immunotherapy has revolutionized the field of oncology. Major immunotherapy approaches such as immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, cytokines, and immunomodulators have shown great promise in preclinical and clinical settings. Among them, immunomodulatory agents including cancer vaccines are particularly appealing; however, they face limitations, notably the absence of efficient and precise targeted delivery of immune-modulatory agents to specific immune cells and the potential for off-target toxicity. Nanomaterials can play a pivotal role in addressing targeting and other challenges in cancer immunotherapy. Dendritic mesoporous silica nanoparticles (DMSNs) can enhance the efficacy of cancer vaccines by enhancing the effective loading of immune modulatory agents owing to their tunable pore sizes. In this work, an emulsion-based method is optimized to customize the pore size of DMSNs and loaded DMSNs with ovalbumin (OVA) and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (CpG-OVA-DMSNs). The immunotherapeutic effect of DMSNs is achieved through controlled chemical release of OVA and CpG in antigen-presenting cells (APCs). The results demonstrated that CpG-OVA-DMSNs efficiently activated the immune response in APCs and reduced tumor growth in the murine B16-OVA tumor model.

3.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996027

RESUMEN

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Asunto(s)
Células Asesinas Naturales , Mesotelina , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/terapia , Línea Celular Tumoral , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Memoria Inmunológica , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Dominios Proteicos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Adv Healthc Mater ; 13(20): e2400323, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38653190

RESUMEN

Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.


Asunto(s)
Inmunoterapia , Nanopartículas , Neoplasias , Dióxido de Silicio , Dióxido de Silicio/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Porosidad , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Animales , Vacunas contra el Cáncer/química , Células Presentadoras de Antígenos/inmunología
5.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562821

RESUMEN

Given the safety, tumor tropism, and ease of genetic manipulation in non-pathogenic Escherichia coli (E. coli), we designed a novel approach to deliver biologics to overcome poor trafficking and exhaustion of immune cells in the tumor microenvironment, via the surface display of key immune-activating cytokines on the outer membrane of E. coli K-12 DH5α. Bacteria expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and NK cell-dependent immune responses leading to dramatic tumor control, extending survival, and curing a significant proportion of immune-competent mice with colorectal carcinoma and melanoma. The engineered bacteria demonstrated tumor tropism, while the abscopal and recall responses suggested epitope spreading and induction of immunologic memory. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting CAR NK cells and safely enhanced their trafficking into the tumors, leading to improved control and survival in xenograft mice bearing mesothelioma tumor cells, otherwise resistant to NK cells. Gene expression analysis of the bacteria-primed CAR NK cells showed enhanced TNFα signaling via NFkB and upregulation of multiple activation markers. Our novel live bacteria-based immunotherapeutic platform safely and effectively induces potent anti-tumor responses in otherwise hard-to-treat solid tumors, motivating further evaluation of this approach in the clinic.

6.
Cells ; 13(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474415

RESUMEN

Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.


Asunto(s)
Interleucina-15 , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Células K562 , Linfocitos T , Citocinas/metabolismo , Receptores Quiméricos de Antígenos/metabolismo
7.
Blood ; 143(10): 895-911, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37890146

RESUMEN

ABSTRACT: A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αß+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αß+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αß+ memory T cells to improve the outcome in patients with MM.


Asunto(s)
Antineoplásicos , Antígenos CD8 , Células Madre Pluripotentes Inducidas , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno de Maduración de Linfocitos B/metabolismo , Linfocitos T Citotóxicos , Antineoplásicos/metabolismo
8.
Stem Cells Transl Med ; 13(3): 230-242, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142460

RESUMEN

Natural killer (NK) cells are a subset of cytotoxic lymphocytes within the innate immune system. While they are naturally cytotoxic, genetic modifications can enhance their tumor-targeting capability, cytotoxicity, persistence, tumor infiltration, and prevent exhaustion. These improvements hold the potential to make NK-cell-based immunotherapies more effective in clinical applications. Currently, several viral and non-viral technologies are used to genetically modify NK cells. For nucleic acid delivery, non-viral methods such as electroporation, lipid nanoparticles, lipofection, and DNA transposons have gained popularity in recent years. On the other hand, viral methods including lentivirus, gamma retrovirus, and adeno-associated virus, remain widely used for gene delivery. Furthermore, gene editing techniques such as clustered regularly interspaced short-palindromic repeats-based, zinc finger nucleases, and transcription activator-like effector nucleases are the pivotal methodologies in this field. This review aims to provide a comprehensive overview of chimeric antigen receptor (CAR) arming strategies and discuss key gene editing techniques. These approaches collectively aim to enhance NK cell/NK cell CAR-based immunotherapies for clinical translation.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales , Edición Génica/métodos , Inmunoterapia/métodos , Receptores Quiméricos de Antígenos/genética , Neoplasias/genética , Neoplasias/terapia
9.
Lab Invest ; 103(8): 100174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37169083

RESUMEN

We developed a comprehensive method for functional assessment of the changes in immune populations and killing activity of peripheral blood mononuclear cells after cocultures with cancer cells using mass cytometry. In this study, a 43-marker mass cytometry panel was applied to a coculture of immune cells from healthy donors' peripheral blood mononuclear cells with diverse cancer cell lines. DNA content combined with classical CD45 surface staining was used as gating parameters for cocultures of immune cells (CD45high/DNAlow) with hematological (CD45low/DNAhigh) and solid cancer cell lines (CD45neg/DNAhigh). This strategy allows for universal discrimination of cancer cells from immune populations without the need for a specific cancer cell marker and simultaneous assessment of phenotypical changes in both populations. The use of mass cytometry allows for simultaneous detection of changes in natural killer, natural killer T cell, and T cell phenotypes and degranulation of immune populations upon target recognition, analysis of target cells for cytotoxic protein granzyme B content, and cancer cell death. These findings have broad applicability in research and clinical settings with the aim to phenotype and assess functional changes following not only NK-cancer cell interactions but also the effect of those interactions on other immune populations.


Asunto(s)
Citotoxicidad Inmunológica , Neoplasias , Leucocitos Mononucleares , Células Asesinas Naturales , Linfocitos T , Técnicas de Cocultivo , Citometría de Flujo , Neoplasias/metabolismo
10.
Cancer Immunol Res ; 10(8): 947-961, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35678717

RESUMEN

Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Proteínas de la Membrana , Mesotelioma Maligno , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Proteínas de la Membrana/agonistas , Receptores Quiméricos de Antígenos
11.
Proc Natl Acad Sci U S A ; 119(25): e2122379119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696582

RESUMEN

Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.


Asunto(s)
Memoria Inmunológica , Células de Memoria Inmunológica , Inmunoterapia Adoptiva , Células Asesinas Naturales , Leucemia Mieloide Aguda , Nucleofosmina , Receptores Quiméricos de Antígenos , Antígeno HLA-A2/inmunología , Humanos , Células de Memoria Inmunológica/inmunología , Células de Memoria Inmunológica/trasplante , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutación , Nucleofosmina/genética , Nucleofosmina/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología
12.
J Control Release ; 347: 425-434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569588

RESUMEN

Therapeutic success in the treatment of pancreatic ductal adenocarcinoma (PDAC) is hindered by the extensive stroma associated to this disease. Stroma is composed of cellular and non-cellular components supporting and evolving with the tumor. One of the most studied mediators of cancer cell-stroma crosstalk is sonic hedgehog (SHh) pathway leading to the intense desmoplasia observed in PDAC tumors. Herein, we demonstrate that the use of mesoporous silica nanoparticles (MSNs) containing an SHh inhibitor, cyclopamine (CyP), and the combination of chemotherapeutic drugs (Gemcitabine (Gem)/cisplatin (cisPt)) as the main delivery system for the sequential treatment led to the reduction in tumor stroma along with an improvement in the treatment of PDAC. We synthesized two versions of the MSN-based platform containing the SHh inhibitor (CyP-MSNs) and the drug combination (PEG-Gem-cisPt-MSNs). In vitro and in vivo protein analysis show that CyP-MSNs effectively inhibited the SHh pathway. In addition, the sequential combination of CyP-MSNs followed by PEG-Gem-cisPt-MSNs led to effective stromal modulation, increased access of secondary PEG-Gem-cisPt-MSNs at the tumor site, and improved therapeutic performance in HPAF II xenograft mice. Taken together, our findings support the potential of drug delivery using MSNs for stroma modulation and to prevent pancreatic cancer progression.


Asunto(s)
Carcinoma Ductal Pancreático , Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/patología , Dióxido de Silicio/uso terapéutico , Neoplasias Pancreáticas
13.
Adv Drug Deliv Rev ; 187: 114357, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605679

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to its aggressiveness and the challenges for early diagnosis and treatment. Recently, nanotechnology has demonstrated relevant strategies to overcome some of the major clinical issues in the treatment of PDAC. This review is focused on the pathological hallmarks of PDAC and the impact of nanotechnology to find solutions. It describes the use of nanoparticle-based systems designed for the delivery of chemotherapeutic agents and combinatorial alternatives that address the chemoresistance associated with PDAC, the development of combination therapies targeting the molecular heterogeneity in PDAC, the investigation of novel therapies dealing with the improvement of immunotherapy and handling the desmoplastic stroma in PDAC by remodeling the tumor microenvironment. A special section is dedicated to the design of nanoparticles for unique non-traditional modalities that could be promising in the future for the improvement in the dismal prognosis of PDAC.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Adenocarcinoma , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Microambiente Tumoral
14.
Front Immunol ; 13: 859177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401529

RESUMEN

Natural killer cells constitute a part of the innate immune system that mediates an effective immune response towards virus-infected and malignant cells. In recent years, research has focused on exploring and advancing NK cells as an active immunotherapy platform. Despite major advances, there are several key challenges that need to be addressed for the effective translation of NK cell research to clinical applications. This review highlights some of these challenges and the innovative strategies being developed to overcome them, including in vitro expansion, in vivo persistence, infiltration to the tumor site, and prevention of exhaustion.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Factores Inmunológicos , Células Asesinas Naturales , Neoplasias/terapia
15.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35349491

RESUMEN

BackgroundResponses to conventional donor lymphocyte infusion for postallogeneic hematopoietic cell transplantation (HCT) relapse are typically poor. Natural killer (NK) cell-based therapy is a promising modality to treat post-HCT relapse.MethodsWe initiated this ongoing phase I trial of adoptively transferred cytokine-induced memory-like (CIML) NK cells in patients with myeloid malignancies who relapsed after haploidentical HCT. All patients received a donor-derived NK cell dose of 5 to 10 million cells/kg after lymphodepleting chemotherapy, followed by systemic IL-2 for 7 doses. High-resolution profiling with mass cytometry and single-cell RNA sequencing characterized the expanding and persistent NK cell subpopulations in a longitudinal manner after infusion.ResultsIn the first 6 enrolled patients on the trial, infusion of CIML NK cells led to a rapid 10- to 50-fold in vivo expansion that was sustained over months. The infusion was well tolerated, with fever and pancytopenia as the most common adverse events. Expansion of NK cells was distinct from IL-2 effects on endogenous post-HCT NK cells, and not dependent on CMV viremia. Immunophenotypic and transcriptional profiling revealed a dynamic evolution of the activated CIML NK cell phenotype, superimposed on the natural variation in donor NK cell repertoires.ConclusionGiven their rapid expansion and long-term persistence in an immune-compatible environment, CIML NK cells serve as a promising platform for the treatment of posttransplant relapse of myeloid disease. Further characterization of their unique in vivo biology and interaction with both T cells and tumor targets will lead to improvements in cell-based immunotherapies.Trial RegistrationClinicalTrials.gov NCT04024761.FundingDunkin' Donuts, NIH/National Cancer Institute, and the Leukemia and Lymphoma Society.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Interleucina-2 , Humanos , Células Asesinas Naturales , Recurrencia , Trasplante Homólogo
16.
Small ; 18(2): e2104449, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758094

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy with a dismal survival rate. Recent combination therapies have had a major impact on the improvement of PDAC prognosis. Nevertheless, clinically used combination regimens such as FOLFIRINOX and gemcitabine (Gem)/nab-paclitaxel still face major challenges due to lack of the safe and ratiometric delivery of multiple drugs. Here, a rationally designed mesoporous silica nanoparticle (MSN)-based platform is reported for the target-specific, spatiotemporal, ratiometric, and safe co-delivery of Gem and cisplatin (cisPt). It is shown that systemic administration of the nanoparticles results in synergistic therapeutic outcome in a syngeneic and clinically relevant genetically engineered PDAC mouse model that has rarely been used for the therapeutic evaluation of nanomedicine. This synergism is associated with a strategic engineering approach, in which nanoparticles provide redox-responsive controlled delivery and in situ differential release of Gem/cisPt drugs with the goal of overcoming resistance to Pt-based drugs. The platform is also rendered with additional tumor-specificity via a novel tumor-associated mucin1 (tMUC1)-specific antibody, TAB004. Overall, the platform suppresses tumor growth and eliminates the off-target toxicities of a highly toxic chemotherapy combination.


Asunto(s)
Neoplasias Pancreáticas , Albúminas , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Desoxicitidina/análogos & derivados , Ratones , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Resultado del Tratamiento , Gemcitabina
17.
Stem Cell Res Ther ; 12(1): 592, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863287

RESUMEN

Natural killer cells are an important part of the innate immune system mediating robust responses to virus-infected and malignant cells without needing prior antigen priming. NK cells have always been thought to be short-lived and with no antigen specificity; however, recent data support the presence of NK cell memory including in the hapten-specific contact hypersensitivity model and in certain viral infections. The memory-like features can also be generated by short-term activation of both murine and human NK cells with cytokine combination of IL-12, IL-15 and IL-18, imparting increased longevity and enhanced anticancer functionality. Preclinical studies and very early clinical trials demonstrate safety and very promising clinical activity of these cytokine-induced memory-like (CIML) NK cells, making them an attractive cell type for developing novel adoptive cellular immunotherapy strategies. Furthermore, efforts are on to arm them with novel gene constructs for enhanced tumor targeting and function.


Asunto(s)
Citocinas , Neoplasias , Animales , Citocinas/metabolismo , Humanos , Memoria Inmunológica , Inmunoterapia , Células Asesinas Naturales , Ratones , Neoplasias/terapia
18.
Cancer J ; 27(2): 168-175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33750077

RESUMEN

ABSTRACT: Success from checkpoint blockade and adoptive cell therapy has brought a new hope in cancer immunotherapy. Adoptive cell therapy involves the isolation of immune cells, ex vivo activation and/or expansion, and reinfusion into the patients, and their effect can be dramatically increased by the incorporation of chimeric antigen receptors specific to molecules expressed on tumor cells. Chimeric antigen receptor T cells have shown exciting results in the treatment of liquid malignancies; nevertheless, they suffer from limitations including severe adverse effects such as cytokine release syndrome and neurotoxicity seen in patients as well as a potential for causing graft-versus-host disease in an allogeneic setting. It is thus imperial to explore innate immune cells including natural killer cells, macrophages, natural killer T cells, and γδ T cells. Here, we provide a broad overview of the major innate immune cells and their potential for adoptive cell therapy and chimeric antigen receptor engineering.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/tendencias , Células Asesinas Naturales , Macrófagos , Células T Asesinas Naturales , Neoplasias/terapia , Receptores Quiméricos de Antígenos/genética , Linfocitos T
19.
ACS Appl Mater Interfaces ; 12(35): 38873-38886, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805923

RESUMEN

Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Ácidos Nucleicos/química , Dióxido de Silicio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Porosidad , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo
20.
Adv Funct Mater ; 28(48)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31258458

RESUMEN

RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation. Functional RNA fibers are studied in silico and their formation is confirmed by various experimental techniques and visualized by atomic force microscopy (AFM). It is demonstrated that the RNA fibers offer multiple advantages among which are: i) programmability and modular design that allow for simultaneous controlled delivery of multiple siRNAs and fluorophores, ii) reduced immunostimulation when compared to other programmable RNA nanoassemblies, and iii) simple production protocol for endotoxin-free fibers with the option of their cotranscriptional assembly. Furthermore, it is shown that functional RNA fibers can be efficiently delivered with various organic and inorganic carriers while retaining their structural integrity in cells. Specific gene silencing triggered by RNA fibers is assessed in human breast cancer and melanoma cell lines, with the confirmed ability of functional fibers to selectively target single nucleotide mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA