Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 10(11): e0141742, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26559062

RESUMEN

The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Cadena Alimentaria , Cubierta de Hielo , Anfípodos/fisiología , Animales , Regiones Antárticas , Organismos Acuáticos/clasificación , Isótopos de Carbono , Copépodos/fisiología , Crustáceos/fisiología , Estuarios , Geografía , Invertebrados/clasificación , Invertebrados/fisiología , Nematodos/fisiología , Isótopos de Nitrógeno , Fitoplancton/clasificación , Fitoplancton/fisiología , Dinámica Poblacional , Agua de Mar , Algas Marinas/clasificación , Algas Marinas/fisiología , Zooplancton/clasificación , Zooplancton/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA