Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biotechnol J ; 14(8): e1800624, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161690

RESUMEN

The fungal endophyte Cyanodermella asteris (C. asteris) has been recently isolated from the medicinal plant Aster tataricus (A. tataricus). This fungus produces astin C, a cyclic pentapeptide with anticancer and anti-inflammatory properties. The production of this secondary metabolite is compared in immobilized and planktonic conditions. For immobilized cultures, a stainless steel packing immersed in the culture broth is used as a support. In these conditions, the fungus exclusively grows on the packing, which provides a considerable advantage for astin C recovery and purification. C. asteris metabolism is different according to the culture conditions in terms of substrate consumption rate, cell growth, and astin C production. Immobilized-cell cultures yield a 30% increase of astin C production, associated with a 39% increase in biomass. The inoculum type as spores rather than hyphae, and a pre-inoculation washing procedure with sodium hydroxide, turns out to be beneficial both for astin C production and fungus development onto the support. Finally, the influence of culture parameters such as pH and medium composition on astin C production is evaluated. With optimized culture conditions, astin C yield is further improved reaching a five times higher final specific yield compared to the value reported with astin C extraction from A. tataricus (0.89 mg g-1 and 0.16 mg g-1 respectively).


Asunto(s)
Ascomicetos/metabolismo , Medios de Cultivo/química , Microbiología Industrial/métodos , Péptidos Cíclicos/biosíntesis , Ascomicetos/citología , Ascomicetos/crecimiento & desarrollo , Reactores Biológicos , Células Inmovilizadas , Endófitos/metabolismo , Microbiología Industrial/instrumentación , Plancton , Acero Inoxidable
2.
Front Microbiol ; 9: 894, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867806

RESUMEN

Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum, and Lactobacillus plantarum. Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae. A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus, and Lactobacillus genus was strongly correlated with most of the flavor compounds detected.

3.
Environ Sci Pollut Res Int ; 24(9): 8017-8032, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28132192

RESUMEN

Over the past decades, an increasing need in renewable resources has progressively appeared. This trend concerns not only fossil fuels but also mineral resources. Wastewater and sewage sludge contain significant concentrations in phosphate and can be considered as a fertilizer source of the utmost importance. In wastewater treatment plants, the biological uptake of phosphate is performed by a specific microbiota: the phosphate-accumulating organisms. These microorganisms are recovered in sewage sludge. Here, we aimed to investigate the occurrence of phosphate accumulators in four wastewater treatment plants. A 16S metagenetic analysis identified the main bacterial phyla extracted from the aerobic treatment: α-Proteobacteria, ß-Proteobacteria, and Sphingobacteria. An enrichment stage was performed to stimulate the specific growth of phosphate-accumulating bacteria in an acetate medium. An analysis of metabolic activities of sulfur and phosphorus highlighted strong modifications related to phosphorus and much less distinguishable effects with sulfur. A solid acetate medium containing 5-Br-4-Cl-3-indolyl phosphate was used to select potential phosphate-accumulating bacteria from the enriched consortia. The positive strains have been found to belong in the genera Acinetobacter, Corynebacterium, and Pseudomonas. Finally, electron microscopy was applied to the strains and allowed to confirm the presence of polyphosphate granules. Some of these bacteria contained granules the size of which exceeded 100 nm.


Asunto(s)
Bacterias/metabolismo , Fosfatos/metabolismo , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/metabolismo , Bacterias/genética , Bacterias/ultraestructura , ADN Bacteriano/genética , ADN Ribosómico/genética , Microscopía Electrónica , Eliminación de Residuos Líquidos
4.
Sensors (Basel) ; 16(6)2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27258275

RESUMEN

Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.

5.
Bioresour Technol ; 206: 264-274, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26873287

RESUMEN

Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design.


Asunto(s)
Biotecnología/métodos , Fósforo/aislamiento & purificación , Aguas Residuales/química , Biotecnología/economía , Estudios de Factibilidad , Reciclaje , Purificación del Agua/economía
6.
Artículo en Inglés | MEDLINE | ID: mdl-26442261

RESUMEN

The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a particular promoter, not only the synthesis of a specific protein but also the content of intracellular metabolites. The level of protein/metabolite is thus proportional to a fluorescence signal. By this way, mean expression profiles of protein/metabolites can be determined non-invasively at a high-throughput rate, allowing the rapid identification of the best producers. Actually, different kinds of reporter systems are available, as well as specific cultivation devices allowing the on-line recording of the fluorescent signal. Cell-to-cell variability is another important phenomenon that can be integrated into the screening procedures for the selection of more efficient microbial cell factories.

7.
Sensors (Basel) ; 15(4): 8981-99, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25894939

RESUMEN

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pP(ZntA)gfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pP(ZntA)gfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pP(ZntA)gfp could be used as a monitoring tool for contaminated soils being processed.


Asunto(s)
Técnicas Biosensibles , Cadmio/metabolismo , Monitoreo del Ambiente/métodos , Escherichia coli/metabolismo , Citometría de Flujo , Plomo/metabolismo , Contaminantes del Suelo/análisis , Zinc/metabolismo
8.
Environ Sci Pollut Res Int ; 22(6): 4369-82, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25300185

RESUMEN

The purpose of this work was the isolation and cultivation of cellulolytic and xylanolytic microorganisms extracted from the gut of the lower termite Reticulitermes santonensis. Microcrystalline cellulose (with and without lignin) and beech wood xylan were used as diets instead of poplar wood in order to select cellulose and hemicellulose-degrading fungi. The strain Sarocladium kiliense (Acremonium kiliense) CTGxxyl was isolated from the termites fed on xylan, while the strain Trichoderma virens CTGxAviL was isolated from the termites fed on cellulose (with and without lignin). Both molds were cultivated in liquid media containing different substrates: agro-residues or purified polymers. S. kiliense produced maximal ß-glucosidase, endo-1,4-ß-D-glucanase, exo-1,4-ß-D-glucanase and endo-1,4-ß-D-xylanase activities of 0.103, 3.99, 0.53, and 40.8 IU/ml, respectively. T. virens produced maximal ß-xylosidase, endo-1,4-ß-D-glucanase, exo-1,4-ß-D-glucanase, and endo-1,4-ß-D-xylanase activities of 0.38, 1.48, 0.69, and 426 IU/ml. The cellulase and the xylanase of S. kiliense, less common than T. virens, were further investigated. The optimal activity of the xylanase was observed at pH 9-10 at 60 °C. The cellulase showed its maximal activity at pH 10, 70 °C. Zymography identified different xylanases produced by both molds, and some fragment sizes were highlighted: 35, 100, and 170 kDa for S. kiliense and 20, 40, 80, and 170 kDa for T. virens. In both cases, endo-1,4-ß-D-xylanase activities were confirmed through mass spectrometry.


Asunto(s)
Celulosa/metabolismo , Tracto Gastrointestinal/microbiología , Hypocreales/aislamiento & purificación , Isópteros/microbiología , Trichoderma/aislamiento & purificación , Xilanos/metabolismo , Animales , Técnicas de Cultivo de Célula , Celulasa , Celulasas/metabolismo , Concentración de Iones de Hidrógeno , Hypocreales/crecimiento & desarrollo , Hypocreales/metabolismo , Temperatura , Trichoderma/crecimiento & desarrollo , Trichoderma/metabolismo , Xilosidasas/metabolismo
9.
Molecules ; 19(4): 4578-94, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24731986

RESUMEN

Hindgut homogenates of the termite Reticulitermes santonensis were incubated with carboxymethyl cellulose (CMC), crystalline celluloses or xylan substrates. Hydrolysates were analyzed with matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectrometry (MALDI-TOF MS). The method was first set up using acid hydrolysis analysis to characterize non-enzymatic profiles. Commercial enzymes of Trichoderma reesei or T. longibrachiatum were also tested to validate the enzymatic hydrolysis analysis. For CMC hydrolysis, data processing and visual display were optimized to obtain comprehensive profiles and allow rapid comparison and evaluation of enzymatic selectivity, according to the number of substituents of each hydrolysis product. Oligosaccharides with degrees of polymerization (DPs) ranging from three to 12 were measured from CMC and the enzymatic selectivity was demonstrated. Neutral and acidic xylo-oligosaccharides with DPs ranging from three to 11 were measured from xylan substrate. These results are of interest for lignocellulose biomass valorization and demonstrated the potential of termites and their symbiotic microbiota as a source of interesting enzymes for oligosaccharides production.


Asunto(s)
Celulosa/análogos & derivados , Dextrinas/química , Intestinos/química , Isópteros/química , Oligosacáridos/química , Animales , Carboximetilcelulosa de Sodio/química , Celulosa/química , Mezclas Complejas/química , Proteínas Fúngicas/química , Hidrólisis , Proteínas de Insectos/química , Intestinos/enzimología , Isópteros/enzimología , Trichoderma/química , Trichoderma/enzimología , Xilanos/química
10.
World J Microbiol Biotechnol ; 30(5): 1655-60, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24353041

RESUMEN

The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce ß-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed ß-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.


Asunto(s)
Aspergillus/enzimología , Aspergillus/aislamiento & purificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Isópteros/microbiología , Aerobiosis , Anaerobiosis , Animales , Aspergillus/clasificación , Bacterias/clasificación , Proteínas Bacterianas/metabolismo , Celulasa/metabolismo , Técnicas de Cultivo , ADN Bacteriano/análisis , ADN Ribosómico/análisis , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fúngicas/metabolismo , Tracto Gastrointestinal/microbiología , Temperatura , alfa-Amilasas/metabolismo
11.
Environ Entomol ; 42(5): 882-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24331601

RESUMEN

The complex microbial community living in the hindgut of lower termites includes prokaryotes, flagellates, yeasts, and filamentous fungi. Many microorganisms are found in the termite gut, but only a few are thought to be involved in symbiotic association to participate in cellulose digestion. Proteomics provides analyses from both taxonomical and functional perspectives. We aimed to identify symbiont diversity in the gut of Reticulitermes santonensis (Feytaud), via complementary electrospray ionization associated to ion trap tandem mass spectrometry (LC-MS/MS) and two-dimensional gel electrophoresis associated to matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry analysis. One specific challenge to the study of lower termites is the relatively few data available on abundant symbiotic flagellates. Analysis based on LC-MS/MS revealed few protein families showing assignments to eukaryotes and the taxonomic origin of highly represented actins could not be established. Tubulins proved to be the most suitable protein family with which to identify flagellate populations from hindgut samples using LC-MS/MS, compared with other protein families, although this method targeted few prokaryotes in our assay. Similarly, two-dimensional gel electrophoresis associated to matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry did not succeed in identifying flagellate populations, but did permit the identification of most of the prokaryotic components of the symbiotic system. Finally, fungi and yeasts were identified by both methods. Owing to the lack of sequenced genes in flagellates, targeting tubulins for LC-MS/MS could allow fingerprints of flagellate populations to be established. Experimental and technical improvements might increase the efficiency of identification of prokaryotic populations in the near future, based on metaproteomic development.


Asunto(s)
Isópteros/microbiología , Isópteros/fisiología , Proteoma , Simbiosis , Animales , Eucariontes/genética , Eucariontes/aislamiento & purificación , Francia , Proteínas Fúngicas/genética , Hongos/genética , Hongos/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Proteínas Protozoarias/genética , Espectrometría de Masa por Ionización de Electrospray , Levaduras/genética , Levaduras/aislamiento & purificación
12.
Appl Biochem Biotechnol ; 171(1): 225-45, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23828225

RESUMEN

The aim of this work was the isolation of xylanolytic microorganisms from the digestive tract of the termite Reticulitermes santonensis. The reducing sugars released after the hydrolysis of xylans can be further fermented to provide bioethanol. A xylanolytic strain of Bacillus subtilis was isolated from the hindgut of the termite and displayed amylase and xylanase activities. The bacterium was grown on media containing agricultural residues: wheat bran, wheat distiller's grains, and rapeseed oil cake. Wheat bran led to the highest induction of xylanase activity, although the development of the strain was less fast than in the other media. It was possible to reach maximal xylanase activities of 44.3, 33.5, and 29.1 I.U./ml in the media containing wheat bran, wheat distiller's grains, and rapeseed oil cake, respectively. Mass spectrometry identified a wide range of xylose oligomers, highlighting an endoxylanase activity. The enzyme was stable up to 45 °C and displayed an optimal pH close to 8.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/aislamiento & purificación , Bacillus subtilis/metabolismo , Técnicas de Cultivo , Intestinos/microbiología , Isópteros/microbiología , Xilanos/metabolismo , Secuencia de Aminoácidos , Animales , Bacillus subtilis/genética , Betula/química , Endo-1,4-beta Xilanasas/biosíntesis , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Datos de Secuencia Molecular , Temperatura
13.
Protein Expr Purif ; 83(2): 117-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22487213

RESUMEN

Termites are world champions at digesting lignocellulosic compounds, thanks to cooperation between their own enzymes and exogenous enzymes from microorganisms. Prokaryotic cells are responsible for a large part of this lignocellulolytic activity. Bacterial enzyme activities have been demonstrated in the higher and the lower termite gut. From five clones of Gram-positive bacteria isolated and identified in a previous work, we constructed a genomic DNA library and performed functional screening for alpha-amylase, beta-glucosidase, and xylanase activities. One candidate, Xyl8B8, showed xylanase activity. Sequence analysis of the genomic insert revealed five complete ORFs on the cloned DNA (5746bp). Among the encoded proteins were a putative endo-1,4-beta-xylanase (XylB8) belonging to glycoside hydrolase family 11 (GH11). On the basis of sequence analyses, genomic DNA organization, and phylogenetic analysis, the insert was shown to come from an actinobacterium. The mature xylanase (mXylB8) was expressed in Escherichia coli and purified by affinity chromatography and detected by zymogram analysis after renaturing. It showed maximal xylanase activity in sodium acetate buffer, pH 5.0 at 55 °C. Its activity was increased by reducing agents and decreased by Cu(2+), some detergents, and chelating agents. Its substrate specificity appeared limited to xylan.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/química , Endo-1,4-beta Xilanasas/química , Isópteros/microbiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cromatografía de Afinidad , Clonación Molecular , Endo-1,4-beta Xilanasas/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Tracto Gastrointestinal/microbiología , Glicósido Hidrolasas , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Xilanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA