Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Cell Dev Biol ; 11: 1250643, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954204

RESUMEN

To maintain a range of cellular functions and to ensure cell survival, cells must control their levels of reactive oxygen species (ROS). The main source of these molecules is the mitochondrial respiration machinery, and the first line of defense against these toxic substances is the mitochondrial enzyme superoxide dismutase 2 (Sod2). Thus, investigating early expression patterns and functions of this protein is critical for understanding how an organism develops ways to protect itself against ROS and enhance tissue fitness. Here, we report on expression pattern and function of zebrafish Sod2, focusing on the role of the protein in migration and maintenance of primordial germ cells during early embryonic development. We provide evidence that Sod2 is involved in purifying selection of vertebrate germ cells, which can contribute to the fitness of the organism in the following generations.

2.
Dev Cell ; 58(17): 1578-1592.e5, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37463577

RESUMEN

Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency.


Asunto(s)
ARN , Pez Cebra , Animales , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Proteínas/metabolismo , ARN/genética , ARN/metabolismo , Pez Cebra/metabolismo
3.
bioRxiv ; 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37461638

RESUMEN

Germ granules, condensates of phase-separated RNA and protein, are organelles essential for germline development in different organisms The patterning of the granules and its relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that localization of RNA molecules to the periphery of the granules, where ribosomes are localized depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for posttranscriptional control, and its importance for preserving germ cell totipotency.

4.
Hum Reprod ; 38(4): 655-670, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807972

RESUMEN

STUDY QUESTION: Is the vertebrate protein Dead end (DND1) a causative factor for human infertility and can novel in vivo assays in zebrafish help in evaluating this? SUMMARY ANSWER: Combining patient genetic data with functional in vivo assays in zebrafish reveals a possible role for DND1 in human male fertility. WHAT IS KNOWN ALREADY: About 7% of the male population is affected by infertility but linking specific gene variants to the disease is challenging. The function of the DND1 protein was shown to be critical for germ cell development in several model organisms but a reliable and cost-effective method for evaluating the activity of the protein in the context of human male infertility is still missing. STUDY DESIGN, SIZE, DURATION: Exome data from 1305 men included in the Male Reproductive Genomics cohort were examined in this study. A total of 1114 of the patients showed severely impaired spermatogenesis but were otherwise healthy. Eighty-five men with intact spermatogenesis were included in the study as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: We screened the human exome data for rare, stop-gain, frameshift, splice site, as well as missense variants in DND1. The results were validated by Sanger sequencing. Immunohistochemical techniques and, when possible, segregation analyses were performed for patients with identified DND1 variants. The amino acid exchange in the human variant was mimicked at the corresponding site of the zebrafish protein. Using different aspects of germline development in live zebrafish embryos as biological assays, we examined the activity level of these DND1 protein variants. MAIN RESULTS AND THE ROLE OF CHANCE: In human exome sequencing data, we identified four heterozygous variants in DND1 (three missense and one frameshift variant) in five unrelated patients. The function of all of the variants was examined in the zebrafish and one of those was studied in more depth in this model. We demonstrate the use of zebrafish assays as a rapid and effective biological readout for evaluating the possible impact of multiple gene variants on male fertility. This in vivo approach allowed us to assess the direct impact of the variants on germ cell function in the context of the native germline. Focusing on the DND1 gene, we find that zebrafish germ cells, expressing orthologs of DND1 variants identified in infertile men, failed to arrive correctly at the position where the gonad develops and exhibited defects in cell fate maintenance. Importantly, our analysis facilitated the evaluation of single nucleotide variants, whose impact on protein function is difficult to predict, and allowed us to distinguish variants that do not affect the protein's activity from those that strongly reduce it and could thus potentially be the primary cause for the pathological condition. These aberrations in germline development resemble the testicular phenotype of azoospermic patients. LIMITATIONS, REASONS FOR CAUTION: The pipeline we present requires access to zebrafish embryos and to basic imaging equipment. The notion that the activity of the protein in the zebrafish-based assays is relevant for the human homolog is well supported by previous knowledge. Nevertheless, the human protein may differ in some respects from its homologue in zebrafish. Thus, the assay should be considered only one of the parameters used in defining DND1 variants as causative or non-causative for infertility. WIDER IMPLICATIONS OF THE FINDINGS: Using DND1 as an example, we have shown that the approach described in this study, relying on bridging between clinical findings and fundamental cell biology, can help to establish links between novel human disease candidate genes and fertility. In particular, the power of the approach we developed is manifested by the fact that it allows the identification of DND1 variants that arose de novo. The strategy presented here can be applied to different genes in other disease contexts. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the German Research Foundation, Clinical Research Unit, CRU326 'Male Germ Cells'. There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Infertilidad Masculina , Pez Cebra , Animales , Humanos , Masculino , Pez Cebra/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Testículo/patología , Fertilidad , Fenotipo , Proteínas de Neoplasias/genética
5.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36515556

RESUMEN

In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.


Asunto(s)
Actinas , Pez Cebra , Animales , Movimiento Celular/fisiología , Células Germinativas
6.
Dev Cell ; 57(16): 2026-2040.e5, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35914525

RESUMEN

Cell ablation is a key method in the research fields of developmental biology, tissue regeneration, and tissue homeostasis. Eliminating specific cell populations allows for characterizing interactions that control cell differentiation, death, behavior, and spatial organization of cells. Current methodologies for inducing cell death suffer from relatively slow kinetics, making them unsuitable for analyzing rapid events and following primary and immediate consequences of the ablation. To address this, we developed a cell-ablation system that is based on bacterial toxin/anti-toxin proteins and enables rapid and cell-autonomous elimination of specific cell types and organs in zebrafish embryos. A unique feature of this system is that it uses an anti-toxin, which allows for controlling the degree and timing of ablation and the resulting phenotypes. The transgenic zebrafish generated in this work represent a highly efficient tool for cell ablation, and this approach is applicable to other model organisms as demonstrated here for Drosophila.


Asunto(s)
Drosophila , Pez Cebra , Animales , Animales Modificados Genéticamente , Muerte Celular , Diferenciación Celular , Pez Cebra/genética
7.
J Cell Biol ; 221(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293964

RESUMEN

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvß5 integrin. JAM-A binds Csk and inhibits the activity of αvß5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvß5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.


Asunto(s)
Inhibición de Contacto , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Inhibición de Contacto/genética , Receptores de Vitronectina , Tetraspaninas
8.
Cell Rep ; 37(7): 110024, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788610

RESUMEN

To reshape neuronal connectivity in adult stages, Drosophila sensory neurons prune their dendrites during metamorphosis using a genetic degeneration program that is induced by the steroid hormone ecdysone. Metamorphosis is a nonfeeding stage that imposes metabolic constraints on development. We find that AMP-activated protein kinase (AMPK), a regulator of energy homeostasis, is cell-autonomously required for dendrite pruning. AMPK is activated by ecdysone and promotes oxidative phosphorylation and pyruvate usage, likely to enable neurons to use noncarbohydrate metabolites such as amino acids for energy production. Loss of AMPK or mitochondrial deficiency causes specific defects in pruning factor translation and the ubiquitin-proteasome system. Our findings distinguish pruning from pathological neurite degeneration, which is often induced by defects in energy production, and highlight how metabolism is adapted to fit energy-costly developmental transitions.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidad Neuronal/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Metamorfosis Biológica/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Pupa/genética , Células Receptoras Sensoriales/metabolismo , Transcriptoma/genética , Ubiquitina/metabolismo
9.
Nat Commun ; 11(1): 5397, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106478

RESUMEN

The migration of many cell types relies on the formation of actomyosin-dependent protrusions called blebs, but the mechanisms responsible for focusing this kind of protrusive activity to the cell front are largely unknown. Here, we employ zebrafish primordial germ cells (PGCs) as a model to study the role of cell-cell adhesion in bleb-driven single-cell migration in vivo. Utilizing a range of genetic, reverse genetic and mathematical tools, we define a previously unknown role for E-cadherin in confining bleb-type protrusions to the leading edge of the cell. We show that E-cadherin-mediated frictional forces impede the backwards flow of actomyosin-rich structures that define the domain where protrusions are preferentially generated. In this way, E-cadherin confines the bleb-forming region to a restricted area at the cell front and reinforces the front-rear axis of migrating cells. Accordingly, when E-cadherin activity is reduced, the bleb-forming area expands, thus compromising the directional persistence of the cells.


Asunto(s)
Actinas/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Células Germinativas/citología , Seudópodos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Actinas/genética , Actomiosina/genética , Actomiosina/metabolismo , Animales , Cadherinas/genética , Femenino , Células Germinativas/metabolismo , Masculino , Seudópodos/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Nat Commun ; 10(1): 3054, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296860

RESUMEN

Two waves of DNA methylation reprogramming occur during mammalian embryogenesis; during preimplantation development and during primordial germ cell (PGC) formation. However, it is currently unclear how evolutionarily conserved these processes are. Here we characterise the DNA methylomes of zebrafish PGCs at four developmental stages and identify retention of paternal epigenetic memory, in stark contrast to the findings in mammals. Gene expression profiling of zebrafish PGCs at the same developmental stages revealed that the embryonic germline is defined by a small number of markers that display strong developmental stage-specificity and that are independent of DNA methylation-mediated regulation. We identified promoters that are specifically targeted by DNA methylation in somatic and germline tissues during vertebrate embryogenesis and that are frequently misregulated in human cancers. Together, these detailed methylome and transcriptome maps of the zebrafish germline provide insight into vertebrate DNA methylation reprogramming and enhance our understanding of the relationships between germline fate acquisition and oncogenesis.


Asunto(s)
Metilación de ADN , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas/crecimiento & desarrollo , Herencia Paterna , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Desarrollo Embrionario/genética , Epigénesis Genética/fisiología , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Secuenciación Completa del Genoma
11.
Dev Biol ; 436(2): 84-93, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477339

RESUMEN

Zebrafish primordial germ cells (PGCs) constitute a useful in vivo model to study cell migration and to elucidate the role of specific proteins in this process. Here we report on the role of the heat shock protein Hsp90aa1.2, a protein whose RNA level is elevated in the PGCs during their migration. Reducing Hsp90aa1.2 activity slows down the progression through the cell cycle and leads to defects in the control over the MTOC number in the migrating cells. These defects result in a slower migration rate and compromise the arrival of PGCs at their target, the region where the gonad develops. Our results emphasize the importance of ensuring rapid progression through the cell cycle during single-cell migration and highlight the role of heat shock proteins in the process.


Asunto(s)
Ciclo Celular/genética , División Celular/genética , Movimiento Celular/genética , Células Germinativas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Animales , División Celular/fisiología , Movimiento Celular/fisiología , Células Germinativas/citología , Células Germinativas/fisiología , Hibridación in Situ , Pez Cebra/genética
12.
Nat Commun ; 8(1): 2210, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263363

RESUMEN

VEGFR-2/Notch signalling regulates angiogenesis in part by driving the remodelling of endothelial cell junctions and by inducing cell migration. Here, we show that VEGF-induced polarized cell elongation increases cell perimeter and decreases the relative VE-cadherin concentration at junctions, triggering polarized formation of actin-driven junction-associated intermittent lamellipodia (JAIL) under control of the WASP/WAVE/ARP2/3 complex. JAIL allow formation of new VE-cadherin adhesion sites that are critical for cell migration and monolayer integrity. Whereas at the leading edge of the cell, large JAIL drive cell migration with supportive contraction, lateral junctions show small JAIL that allow relative cell movement. VEGFR-2 activation initiates cell elongation through dephosphorylation of junctional myosin light chain II, which leads to a local loss of tension to induce JAIL-mediated junctional remodelling. These events require both microtubules and polarized Rac activity. Together, we propose a model where polarized JAIL formation drives directed cell migration and junctional remodelling during sprouting angiogenesis.


Asunto(s)
Actinas/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/efectos de los fármacos , Antígenos CD/efectos de los fármacos , Cadherinas/efectos de los fármacos , Miosinas Cardíacas/metabolismo , Adhesión Celular , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Endotelio Vascular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Cardiovasculares , Cadenas Ligeras de Miosina/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Seudópodos/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Remodelación Vascular , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Unión al GTP rac/metabolismo
13.
Dev Cell ; 43(6): 704-715.e5, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257950

RESUMEN

Maintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning, and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein Dead end (Dnd). PGCs knocked down for Dnd lose their characteristic morphology and adopt various somatic cell fates. Concomitantly, they gain a gene expression profile reflecting differentiation into cells of different germ layers, in a process that we could direct by expression of specific cell-fate determinants. Importantly, we visualized these events within live zebrafish embryos, which provide temporal information regarding cell reprogramming. Our results shed light on the mechanisms controlling germ cell fate maintenance and are relevant for the formation of teratoma, a tumor class composed of cells from more than one germ layer.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Movimiento Celular , Técnicas de Reprogramación Celular/métodos , Endodermo/fisiología , Células Germinativas/metabolismo , Células Germinativas/fisiología , Hibridación in Situ , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
14.
Dev Cell ; 43(5): 577-587.e5, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29173819

RESUMEN

Cell migration is essential for morphogenesis, organ formation, and homeostasis, with relevance for clinical conditions. The migration of primordial germ cells (PGCs) is a useful model for studying this process in the context of the developing embryo. Zebrafish PGC migration depends on the formation of cellular protrusions in form of blebs, a type of protrusion found in various cell types. Here we report on the mechanisms allowing the inflation of the membrane during bleb formation. We show that the rapid expansion of the protrusion depends on membrane invaginations that are localized preferentially at the cell front. The formation of these invaginations requires the function of Cdc42, and their unfolding allows bleb inflation and dynamic cell-shape changes performed by migrating cells. Inhibiting the formation and release of the invaginations strongly interfered with bleb formation, cell motility, and the ability of the cells to reach their target.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular/fisiología , Forma de la Célula/fisiología , Células Germinativas/citología , Pez Cebra , Actinas/metabolismo , Animales , Estructuras de la Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Células Germinativas/metabolismo , Pez Cebra/metabolismo
15.
Cell Rep ; 16(3): 622-30, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27373161

RESUMEN

We studied the mtDNA bottleneck in zebrafish to elucidate size, timing, and variation in germline and non-germline cells. Mature zebrafish oocytes contain, on average, 19.0 × 10(6) mtDNA molecules with high variation between oocytes. During embryogenesis, the mtDNA copy number decreases to ∼170 mtDNA molecules per primordial germ cell (PGC), a number similar to that in mammals, and to ∼50 per non-PGC. These occur at the same developmental stage, implying considerable variation in mtDNA copy number in (non-)PGCs of the same female, dictated by variation in the mature oocyte. The presence of oocytes with low mtDNA numbers, if similar in humans, could explain how (de novo) mutations can reach high mutation loads within a single generation. High mtDNA copy numbers in mature oocytes are established by mtDNA replication during oocyte development. Bottleneck differences between germline and non-germline cells, due to early differentiation of PGCs, may account for different distribution patterns of familial mutations.


Asunto(s)
ADN Mitocondrial/genética , Células Germinativas/metabolismo , Pez Cebra/genética , Animales , Diferenciación Celular/genética , Replicación del ADN/genética , Desarrollo Embrionario/genética , Femenino , Dosificación de Gen/genética , Mitocondrias/genética , Mutación/genética , Oocitos/metabolismo , Oogénesis/genética
16.
Nat Commun ; 7: 11288, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27088892

RESUMEN

The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function.


Asunto(s)
Embrión no Mamífero/metabolismo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Adhesión Celular/genética , Movimiento Celular/genética , Sistema Digestivo/citología , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Perfilación de la Expresión Génica/métodos , Gónadas/citología , Gónadas/embriología , Gónadas/metabolismo , Metaloproteínas/clasificación , Metaloproteínas/genética , Metaloproteínas/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo , Pez Cebra/embriología , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Dis Model Mech ; 9(2): 141-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744352

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.


Asunto(s)
Modelos Animales de Enfermedad , Metástasis de la Neoplasia , Receptores CXCR4/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Secuencia de Aminoácidos , Animales , Femenino , Xenoinjertos , Humanos , Ligandos , Datos de Secuencia Molecular , Receptores CXCR4/química , Homología de Secuencia de Aminoácido , Pez Cebra
18.
Elife ; 42015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25875301

RESUMEN

Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue.


Asunto(s)
Movimiento Celular , Polaridad Celular , Quimiocina CXCL12/metabolismo , Células Germinativas/citología , Espacio Intracelular/metabolismo , Seudópodos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Endocitosis/efectos de los fármacos , Células Germinativas/metabolismo , Modelos Biológicos , Receptores CXCR4/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
19.
Curr Biol ; 25(8): 1096-103, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25843033

RESUMEN

Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Quimiocinas/metabolismo , Células Germinativas/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Líquido Intracelular/química , Actinas/metabolismo , Animales , Quimiocina CXCL12/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Líquido Intracelular/metabolismo , Pez Cebra
20.
Proc Natl Acad Sci U S A ; 111(31): 11389-94, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049415

RESUMEN

The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.


Asunto(s)
Movimiento Celular , Proteínas RGS/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cadherinas/metabolismo , Movimiento Celular/genética , Polaridad Celular/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas RGS/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA