Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 20(7): e1012307, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39058746

RESUMEN

Access to treatment and medication for opioid use disorder (MOUD) is essential in reducing opioid use and associated behavioral risks, such as syringe sharing among persons who inject drugs (PWID). Syringe sharing among PWID carries high risk of transmission of serious infections such as hepatitis C and HIV. MOUD resources, such as methadone provider clinics, however, are often unavailable to PWID due to barriers like long travel distance to the nearest methadone provider and the required frequency of clinic visits. The goal of this study is to examine the uncertainty in the effects of travel distance in initiating and continuing methadone treatment and how these interact with different spatial distributions of methadone providers to impact co-injection (syringe sharing) risks. A baseline scenario of spatial access was established using the existing locations of methadone providers in a geographical area of metropolitan Chicago, Illinois, USA. Next, different counterfactual scenarios redistributed the locations of methadone providers in this geographic area according to the densities of both the general adult population and according to the PWID population per zip code. We define different reasonable methadone access assumptions as the combinations of short, medium, and long travel distance preferences combined with three urban/suburban travel distance preference. Our modeling results show that when there is a low travel distance preference for accessing methadone providers, distributing providers near areas that have the greatest need (defined by density of PWID) is best at reducing syringe sharing behaviors. However, this strategy also decreases access across suburban locales, posing even greater difficulty in regions with fewer transit options and providers. As such, without an adequate number of providers to give equitable coverage across the region, spatial distribution cannot be optimized to provide equitable access to all PWID. Our study has important implications for increasing interest in methadone as a resurgent treatment for MOUD in the United States and for guiding policy toward improving access to MOUD among PWID.


Asunto(s)
Accesibilidad a los Servicios de Salud , Metadona , Tratamiento de Sustitución de Opiáceos , Trastornos Relacionados con Opioides , Metadona/uso terapéutico , Humanos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/epidemiología , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Tratamiento de Sustitución de Opiáceos/estadística & datos numéricos , Tratamiento de Sustitución de Opiáceos/métodos , Abuso de Sustancias por Vía Intravenosa/epidemiología , Compartición de Agujas/estadística & datos numéricos , Adulto , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/administración & dosificación , Biología Computacional
2.
Healthcare (Basel) ; 12(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540608

RESUMEN

Despite the availability of direct-acting antivirals that cure individuals infected with the hepatitis C virus (HCV), developing a vaccine is critically needed in achieving HCV elimination. HCV vaccine trials have been performed in populations with high incidence of new HCV infection such as people who inject drugs (PWID). Developing strategies of optimal recruitment of PWID for HCV vaccine trials could reduce sample size, follow-up costs and disparities in enrollment. We investigate trial recruitment informed by machine learning and evaluate a strategy for HCV vaccine trials termed PREDICTEE-Predictive Recruitment and Enrichment method balancing Demographics and Incidence for Clinical Trial Equity and Efficiency. PREDICTEE utilizes a survival analysis model applied to trial candidates, considering their demographic and injection characteristics to predict the candidate's probability of HCV infection during the trial. The decision to recruit considers both the candidate's predicted incidence and demographic characteristics such as age, sex, and race. We evaluated PREDICTEE using in silico methods, in which we first generated a synthetic candidate pool and their respective HCV infection events using HepCEP, a validated agent-based simulation model of HCV transmission among PWID in metropolitan Chicago. We then compared PREDICTEE to conventional recruitment of high-risk PWID who share drugs or injection equipment in terms of sample size and recruitment equity, with the latter measured by participation-to-prevalence ratio (PPR) across age, sex, and race. Comparing conventional recruitment to PREDICTEE found a reduction in sample size from 802 (95%: 642-1010) to 278 (95%: 264-294) with PREDICTEE, while also reducing screening requirements by 30%. Simultaneously, PPR increased from 0.475 (95%: 0.356-0.568) to 0.754 (95%: 0.685-0.834). Even when targeting a dissimilar maximally balanced population in which achieving recruitment equity would be more difficult, PREDICTEE is able to reduce sample size from 802 (95%: 642-1010) to 304 (95%: 288-322) while improving PPR to 0.807 (95%: 0.792-0.821). PREDICTEE presents a promising strategy for HCV clinical trial recruitment, achieving sample size reduction while improving recruitment equity.

3.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37292847

RESUMEN

Access to treatment and medication for opioid use disorder (MOUD) is essential in reducing opioid use and associated behavioral risks, such as syringe sharing among persons who inject drugs (PWID). Syringe sharing among PWID carries high risk of transmission of serious infections such as hepatitis C and HIV. MOUD resources, such as methadone provider clinics, however, are often unavailable to PWID due to barriers like long travel distance to the nearest methadone provider and the required frequency of clinic visits. The goal of this study is to examine the uncertainty in the effects of travel distance in initiating and continuing methadone treatment and how these interact with different spatial distributions of methadone providers to impact co-injection (syringe sharing) risks. A baseline scenario of spatial access was established using the existing locations of methadone providers in a geographical area of metropolitan Chicago, Illinois, USA. Next, different counterfactual scenarios redistributed the locations of methadone providers in this geographic area according to the densities of both the general adult population and according to the PWID population per zip code. We define different reasonable methadone access assumptions as the combinations of short, medium, and long travel distance preferences combined with three urban/suburban travel distance preference. Our modeling results show that when there is a low travel distance preference for accessing methadone providers, distributing providers near areas that have the greatest need (defined by density of PWID) is best at reducing syringe sharing behaviors. However, this strategy also decreases access across suburban locales, posing even greater difficulty in regions with fewer transit options and providers. As such, without an adequate number of providers to give equitable coverage across the region, spatial distribution cannot be optimized to provide equitable access to all PWID. Our study has important implications for increasing interest in methadone as a resurgent treatment for MOUD in the United States and for guiding policy toward improving access to MOUD among PWID.

4.
PLoS One ; 17(3): e0264983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271634

RESUMEN

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease and mortality worldwide. Direct-acting antiviral (DAA) therapy leads to high cure rates. However, persons who inject drugs (PWID) are at risk for reinfection after cure and may require multiple DAA treatments to reach the World Health Organization's (WHO) goal of HCV elimination by 2030. Using an agent-based model (ABM) that accounts for the complex interplay of demographic factors, risk behaviors, social networks, and geographic location for HCV transmission among PWID, we examined the combination(s) of DAA enrollment (2.5%, 5%, 7.5%, 10%), adherence (60%, 70%, 80%, 90%) and frequency of DAA treatment courses needed to achieve the WHO's goal of reducing incident chronic infections by 90% by 2030 among a large population of PWID from Chicago, IL and surrounding suburbs. We also estimated the economic DAA costs associated with each scenario. Our results indicate that a DAA treatment rate of >7.5% per year with 90% adherence results in 75% of enrolled PWID requiring only a single DAA course; however 19% would require 2 courses, 5%, 3 courses and <2%, 4 courses, with an overall DAA cost of $325 million to achieve the WHO goal in metropolitan Chicago. We estimate a 28% increase in the overall DAA cost under low adherence (70%) compared to high adherence (90%). Our modeling results have important public health implications for HCV elimination among U.S. PWID. Using a range of feasible treatment enrollment and adherence rates, we report robust findings supporting the need to address re-exposure and reinfection among PWID to reduce HCV incidence.


Asunto(s)
Consumidores de Drogas , Hepatitis C Crónica , Hepatitis C , Abuso de Sustancias por Vía Intravenosa , Antivirales/uso terapéutico , Chicago/epidemiología , Hepacivirus , Hepatitis C/complicaciones , Hepatitis C/tratamiento farmacológico , Hepatitis C/epidemiología , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Reinfección , Abuso de Sustancias por Vía Intravenosa/complicaciones , Abuso de Sustancias por Vía Intravenosa/tratamiento farmacológico , Abuso de Sustancias por Vía Intravenosa/epidemiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-35865008

RESUMEN

Criminal justice involved (CJI) individuals with a history of opioid use disorder (OUD) are at high risk of overdose and death in the weeks following release from jail. We developed the Justice-Community Circulation Model (JCCM) to investigate OUD/CJI dynamics post-release and the effects of interventions on overdose deaths. The JCCM uses a synthetic agent-based model population of approximately 150,000 unique individuals that is generated using demographic information collected from multiple Chicago-area studies and data sets. We use a high-performance computing (HPC) workflow to implement a sequential approximate Bayesian computation algorithm for calibrating the JCCM. The calibration results in the simulated joint posterior distribution of the JCCM input parameters. The calibrated model is used to investigate the effects of a naloxone intervention for a mass jail release. The simulation results show the degree to which a targeted intervention focusing on recently released jail inmates can help reduce the risk of death from opioid overdose.

6.
Proc Winter Simul Conf ; 2019: 1008-1019, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32624641

RESUMEN

Hepatitis C (HCV) is a leading cause of chronic liver disease and mortality worldwide and persons who inject drugs (PWID) are at the highest risk for acquiring and transmitting HCV infection. We developed an agent-based model (ABM) to identify and optimize direct-acting antiviral (DAA) therapy scale-up and treatment strategies for achieving the World Health Organization (WHO) goals of HCV elimination by the year 2030. While DAA is highly efficacious, it is also expensive, and therefore intervention strategies should balance the goals of elimination and the cost of the intervention. Here we present and compare two methods for finding PWID treatment enrollment strategies by conducting a standard model parameter sweep and compare the results to an evolutionary multi-objective optimization algorithm. The evolutionary approach provides a pareto-optimal set of solutions that minimizes treatment costs and incidence rates.

7.
J Biotechnol ; 108(1): 61-77, 2004 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-14741770

RESUMEN

Supervision of batch bioprocess operations in real-time during the progress of a batch run offers many advantages over end-of-batch quality control. Multivariate statistical techniques such as multiway partial least squares (MPLS) provide an efficient modeling and supervision framework. A new type of MPLS modeling technique that is especially suitable for online real-time process monitoring and the multivariate monitoring charts are presented. This online process monitoring technique is also extended to include predictions of end-of-batch quality measurements during the progress of a batch run. Process monitoring, quality estimation and fault diagnosis activities are automated and supervised by embedding them into a real-time knowledge-based system (RTKBS). Interpretation of multivariate charts is also automated through a generic rule-base for efficient alarm handling. The integrated RTKBS and the implementation of MPLS-based process monitoring and quality control are illustrated using a fed-batch penicillin production benchmark process simulator.


Asunto(s)
Sistemas de Computación , Análisis Multivariante , Algoritmos , Reactores Biológicos , Simulación por Computador , Sistemas Especialistas/instrumentación , Modelos Biológicos , Penicilinas/metabolismo
8.
ISA Trans ; 41(2): 255-70, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12071258

RESUMEN

A knowledge-based system (KBS) was designed for automated system identification, process monitoring, and diagnosis of sensor faults. The real-time KBS consists of a supervisory system using G2 KBS development software linked with external statistical modules for system identification and sensor fault diagnosis. The various statistical techniques were prototyped in MATLAB, converted to ANSI C code, and linked with the G2 Standard Interface. The KBS automatically performs all operations of data collection, identification, monitoring, and sensor fault diagnosis with little or no input from the user. Navigation throughout the KBS is via menu buttons on each user-accessible screen. Selected process variables are displayed on charts showing the history of the variables over a period of time. Multivariate statistical tests and contribution plots are also shown graphically. The KBS was evaluated using simulation studies with a polymerization reactor through a nonlinear dynamic model. Both normal operation conditions as well as conditions of process disturbances were observed to evaluate the KBS performance. Specific user-defined disturbances were added to the simulation, and the KBS correctly diagnosed both process and sensor faults when present.


Asunto(s)
Algoritmos , Análisis de Falla de Equipo/métodos , Sistemas Especialistas/instrumentación , Modelos Estadísticos , Procesos Estocásticos , Simulación por Computador , Análisis Multivariante , Dinámicas no Lineales , Polímeros/síntesis química , Control de Calidad , Sensibilidad y Especificidad , Diseño de Software , Transductores , Interfaz Usuario-Computador , Compuestos de Vinilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA