Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 13(1): 20608, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062235

RESUMEN

Paternal aging has consistently been linked to an increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Recent evidence has highlighted the involvement of epigenetic factors. In this study, we aimed to investigate age-related alterations in microRNA (miRNA) profiles of mouse sperm and analyze target genes regulated by differentially expressed miRNAs (DEmiRNAs). Microarray analyses were conducted on sperm samples from mice at different ages: 3 months (3 M), over 12 M, and beyond 20 M. We identified 26 miRNAs with differential expression between the 3 and 20 M mice, 34 miRNAs between the 12 and 20 M mice, and 2 miRNAs between the 3 and 12 M mice. The target genes regulated by these miRNAs were significantly associated with apoptosis/ferroptosis pathways and the nervous system. We revealed alterations in sperm miRNA profiles due to aging and suggest that the target genes regulated by these DEmiRNAs are associated with apoptosis and the nervous system, implying a potential link between paternal aging and an increased risk of neurodevelopmental disorders such as ASD. The observed age-related changes in sperm miRNA profiles have the potential to impact sperm quality and subsequently affect offspring development.


Asunto(s)
Trastorno del Espectro Autista , MicroARNs , Masculino , Ratones , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Semen/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Espermatozoides/metabolismo , Envejecimiento/genética
2.
Stem Cell Reports ; 17(9): 1924-1941, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35931081

RESUMEN

A small number of offspring are born from the numerous sperm generated from spermatogonial stem cells (SSCs). However, little is known regarding the rules and molecular mechanisms that govern germline transmission patterns. Here we report that the Trp53 tumor suppressor gene limits germline genetic diversity via Cdkn1a. Trp53-deficient SSCs outcompeted wild-type (WT) SSCs and produced significantly more progeny after co-transplantation into infertile mice. Lentivirus-mediated transgenerational lineage analysis showed that offspring bearing the same virus integration were repeatedly born in a non-random pattern from WT SSCs. However, SSCs lacking Trp53 or Cdkn1a sired transgenic offspring in random patterns with increased genetic diversity. Apoptosis of KIT+ differentiating germ cells was reduced in Trp53- or Cdkn1a-deficient mice. Reduced CDKN1A expression in Trp53-deficient spermatogonia suggested that Cdkn1a limits genetic diversity by supporting apoptosis of syncytial spermatogonial clones. Therefore, the TRP53-CDKN1A pathway regulates tumorigenesis and the germline transmission pattern.


Asunto(s)
Células Madre Germinales Adultas , Semen , Animales , Apoptosis/genética , Masculino , Ratones , Espermatogénesis/genética , Espermatogonias/metabolismo , Espermatozoides
3.
Dev Dyn ; 251(3): 525-535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34542211

RESUMEN

BACKGROUND: Repressor element 1-silencing transcription factor (REST) is a master regulator that is highly expressed in multipotent stem cells to repress gene networks involving a wide range of biological processes. A recent study has suggested that REST might be involved in a misregulation of its target genes in the embryonic brain of offspring derived from aged fathers. However, detailed analyses of the REST function in spermatogenesis are lacking due to difficulty in the detection of REST protein in specific cell types. RESULTS: To determine localization of REST, we generated an epitope tag knock-in (KI) mouse line with the C-terminus insertion of a podoplanin (PA)-tag at an endogenous Rest locus by the CRISPR/Cas9 system. Localization of the PA-tag was confirmed in neural stem cells marked with Pax6 in the embryonic brain. Moreover, PA-tagged REST was detected in undifferentiated and differentiating spermatogonia as well as Sertoli cells in both neonatal and adult testes. CONCLUSIONS: We demonstrate that REST is expressed at the early step of spermatogenesis and suggest a possibility that REST may modulate the epigenetic state of male germline cells. Our KI mice may be useful for studying REST-associated molecular mechanisms of neurodevelopmental and age-related disorders.


Asunto(s)
Edición Génica , Testículo , Animales , Epítopos/genética , Epítopos/metabolismo , Masculino , Ratones , Proteínas Represoras , Espermatogénesis/genética , Espermatogonias/metabolismo , Testículo/metabolismo , Factores de Transcripción/metabolismo
5.
PLoS One ; 15(4): e0230930, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32267870

RESUMEN

Human epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epigenetic alterations in sperm that can influence developmental programs in offspring. In this study, we qualitatively and semiquantitatively evaluated histone modification patterns in male germline cells throughout spermatogenesis based on immunostaining of testes taken from young (3 months old) and aged (12 months old) mice. Although localization patterns were not obviously changed between young and aged testes, some histone modification showed differences in their intensity. Among histone modifications that repress gene expression, histone H3 lysine 9 trimethylation (H3K9me3) was decreased in the male germline cells of the aged testis, while H3K27me2/3 was increased. The intensity of H3K27 acetylation (ac), an active mark, was lower/higher depending on the stages in the aged testis. Interestingly, H3K27ac was detected on the putative sex chromosomes of round spermatids, while other chromosomes were occupied by a repressive mark, H3K27me3. Among other histone modifications that activate gene expression, H3K4me2 was drastically decreased in the male germline cells of the aged testis. In contrast, H3K79me3 was increased in M-phase spermatocytes, where it accumulates on the sex chromosomes. Therefore, aging induced alterations in the amount of histone modifications and in the differences of patterns for each modification. Moreover, histone modifications on the sex chromosomes and on other chromosomes seems to be differentially regulated by aging. These findings will help elucidate the epigenetic mechanisms underlying the influence of paternal aging on offspring development.


Asunto(s)
Histonas/genética , Meiosis/genética , Espermatocitos/fisiología , Espermatogénesis/genética , Testículo/fisiología , Acetilación , Animales , Epigénesis Genética/genética , Epigenómica/métodos , Expresión Génica/genética , Código de Histonas/genética , Humanos , Lisina/genética , Masculino , Metilación , Ratones , Procesamiento Proteico-Postraduccional/genética , Cromosomas Sexuales/genética , Espermátides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA