Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Adv Sci (Weinh) ; : e2402740, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899849

RESUMEN

Amyloid polymorphism is a hallmark of almost all amyloid species, yet the mechanisms underlying the formation of amyloid polymorphs and their complex architectures remain elusive. Commonly, two main mesoscopic topologies are found in amyloid polymorphs characterized by non-zero Gaussian and mean curvatures: twisted ribbons and helical fibrils, respectively. Here, a rich heterogeneity of configurations is demonstrated on insulin amyloid fibrils, where protofilament packing can occur, besides the common polymorphs, also in a combined mode forming mixed-curvature polymorphs. Through AFM statistical analysis, an extended array of heterogeneous architectures that are rationalized by mesoscopic theoretical arguments are identified. Notably, an unusual fibrillization pathway is also unraveled toward mixed-curvature polymorphs via the widespread recruitment and intertwining of protofilaments and protofibrils. The results present an original view of amyloid polymorphism and advance the fundamental understanding of the fibrillization mechanism from single protofilaments into mature amyloid fibrils.

3.
Nat Commun ; 14(1): 3939, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402718

RESUMEN

Tau protein fibrillization is implicated in the pathogenesis of several neurodegenerative diseases collectively known as Tauopathies. For decades, investigating Tau fibrillization in vitro has required the addition of polyanions or other co-factors to induce its misfolding and aggregation, with heparin being the most commonly used. However, heparin-induced Tau fibrils exhibit high morphological heterogeneity and a striking structural divergence from Tau fibrils isolated from Tauopathies patients' brains at ultra- and macro-structural levels. To address these limitations, we developed a quick, cheap, and effective method for producing completely co-factor-free fibrils from all full-length Tau isoforms and mixtures thereof. We show that Tau fibrils generated using this ClearTau method - ClearTau fibrils - exhibit amyloid-like features, possess seeding activity in biosensor cells and hiPSC-derived neurons, retain RNA-binding capacity, and have morphological properties and structures more reminiscent of the properties of the brain-derived Tau fibrils. We present the proof-of-concept implementation of the ClearTau platform for screening Tau aggregation-modifying compounds. We demonstrate that these advances open opportunities to investigate the pathophysiology of disease-relevant Tau aggregates and will facilitate the development of Tau pathology-targeting and modifying therapies and PET tracers that can distinguish between different Tauopathies.


Asunto(s)
Agregación Patológica de Proteínas , Proteínas tau , Proteínas tau/química , Heparina/química , Humanos , Línea Celular , Técnicas Biosensibles , Células Madre Pluripotentes , Neuronas , Isoformas de Proteínas , Microscopía por Crioelectrón
4.
Elife ; 112022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35638899

RESUMEN

The lives of microbes unfold at the micron scale, and their molecular machineries operate at the nanoscale. Their study at these resolutions is key toward achieving a better understanding of their ecology. We focus on cellulose degradation of the canonical Clostridium thermocellum system to comprehend how microbes build and use their cellulosomal machinery at these nanometer scales. Degradation of cellulose, the most abundant organic polymer on Earth, is instrumental to the global carbon cycle. We reveal that bacterial cells form 'cellulosome capsules' driven by catalytic product-dependent dynamics, which can increase the rate of hydrolysis. Biosynthesis of this energetically costly machinery and cell growth are decoupled at the single-cell level, hinting at a division-of-labor strategy through phenotypic heterogeneity. This novel observation highlights intrapopulation interactions as key to understanding rates of fiber degradation.


Asunto(s)
Celulosomas , Clostridium thermocellum , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , Celulosomas/metabolismo , Fibras de la Dieta/metabolismo , Hidrólisis
5.
Nature ; 598(7882): 667-671, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646014

RESUMEN

Nuclear pore complexes (NPCs) create large conduits for cargo transport between the nucleus and cytoplasm across the nuclear envelope (NE)1-3. These multi-megadalton structures are composed of about thirty different nucleoporins that are distributed in three main substructures (the inner, cytoplasmic and nucleoplasmic rings) around the central transport channel4-6. Here we use cryo-electron tomography on DLD-1 cells that were prepared using cryo-focused-ion-beam milling to generate a structural model for the human NPC in its native environment. We show that-compared with previous human NPC models obtained from purified NEs-the inner ring in our model is substantially wider; the volume of the central channel is increased by 75% and the nucleoplasmic and cytoplasmic rings are reorganized. Moreover, the NPC membrane exhibits asymmetry around the inner-ring complex. Using targeted degradation of Nup96, a scaffold nucleoporin of the cytoplasmic and nucleoplasmic rings, we observe the interdependence of each ring in modulating the central channel and maintaining membrane asymmetry. Our findings highlight the inherent flexibility of the NPC and suggest that the cellular environment has a considerable influence on NPC dimensions and architecture.


Asunto(s)
Modelos Estructurales , Poro Nuclear/química , Línea Celular Tumoral , Núcleo Celular/química , Citoplasma/química , Tomografía con Microscopio Electrónico , Humanos , Proteínas de Complejo Poro Nuclear/química
6.
J Cell Sci ; 134(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33536248

RESUMEN

The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from LmnaH222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in LmnaH222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.


Asunto(s)
Lamina Tipo A , Músculo Estriado , Animales , Citoesqueleto , Lamina Tipo A/genética , Lamina Tipo B/genética , Ratones , Mutación/genética , Lámina Nuclear
7.
J Cell Biol ; 220(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570570

RESUMEN

Nuclear lamin isoforms form fibrous meshworks associated with nuclear pore complexes (NPCs). Using datasets prepared from subpixel and segmentation analyses of 3D-structured illumination microscopy images of WT and lamin isoform knockout mouse embryo fibroblasts, we determined with high precision the spatial association of NPCs with specific lamin isoform fibers. These relationships are retained in the enlarged lamin meshworks of Lmna-/- and Lmnb1-/- fibroblast nuclei. Cryo-ET observations reveal that the lamin filaments composing the fibers contact the nucleoplasmic ring of NPCs. Knockdown of the ring-associated nucleoporin ELYS induces NPC clusters that exclude lamin A/C fibers but include LB1 and LB2 fibers. Knockdown of the nucleoporin TPR or NUP153 alters the arrangement of lamin fibers and NPCs. Evidence that the number of NPCs is regulated by specific lamin isoforms is presented. Overall the results demonstrate that lamin isoforms and nucleoporins act together to maintain the normal organization of lamin meshworks and NPCs within the nuclear envelope.


Asunto(s)
Simulación por Computador , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Poro Nuclear/metabolismo , Animales , Línea Celular , Embrión de Mamíferos/ultraestructura , Fibroblastos/ultraestructura , Lamina Tipo A/genética , Lamina Tipo B/genética , Ratones , Ratones Noqueados , Poro Nuclear/genética , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
8.
Structure ; 29(5): 488-498.e4, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33476550

RESUMEN

The actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cytokinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in intact cells would foster an unprecedented understanding of cytoskeletal processes and their associated mechanical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells. However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies, and therefore the polarity of actin filaments cannot be directly measured. Here, we developed a method that enables us to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin polarity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the apical boundary of the adhesion site.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Adhesiones Focales/ultraestructura , Actinas/química , Animales , Línea Celular , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Ratones
9.
Curr Opin Cell Biol ; 54: 72-79, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29800922

RESUMEN

Lamins are the main component of the nuclear lamina, a protein meshwork at the inner nuclear membrane which primarily provide mechanical stability to the nucleus. Lamins, type V intermediate filament proteins, are also involved in many nuclear activities. Structural analysis of nuclei revealed that lamins form 3.5nm thick filaments often interact with nuclear pore complexes. Mutations in the LMNA gene, encoding A-type lamins, have been associated with at least 15 distinct diseases collectively termed laminopathies, including muscle, metabolic and neurological disorders, and premature aging syndrome. It is unclear how laminopathic mutations lead to such a wide array of diseases, essentially affecting almost all tissues.


Asunto(s)
Núcleo Celular/metabolismo , Enfermedad , Salud , Laminas/metabolismo , Animales , Humanos , Laminas/química , Laminas/genética , Mutación/genética , Poro Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA