Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 8(1): 358, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963849

RESUMEN

Helicobacter (H.) pylori-induced gastritis is a risk factor for gastric cancer (GC). Deleted-in-liver-cancer-1 (DLC1/ARHGAP7) inhibits RHOA, a downstream mediator of virulence factor cytotoxin-A (CagA) signalling and driver of consensus-molecular-subtype-2 diffuse GC. DLC1 located to enterochromaffin-like and MIST1+ stem/chief cells in the stomach. DLC1+ cells were reduced in H. pylori gastritis and GC, and in mice infected with H. pylori. DLC1 positivity inversely correlated with tumour progression in patients. GC cells retained an N-terminal truncation variant DLC1v4 in contrast to full-length DLC1v1 in non-neoplastic tissues. H. pylori and CagA downregulated DLC1v1/4 promoter activities. DLC1v1/4 inhibited cell migration and counteracted CagA-driven stress phenotypes enforcing focal adhesion. CagA and DLC1 interacted via their N- and C-terminal domains, proposing that DLC1 protects against H. pylori by neutralising CagA. H. pylori-induced DLC1 loss is an early molecular event, which makes it a potential marker or target for subtype-aware cancer prevention or therapy.

2.
Microorganisms ; 9(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34442827

RESUMEN

The gastric pathogen Helicobacter pylori infects half of the world's population and is a major risk factor for gastric cancer development. In order to attach to human gastric epithelial cells and inject the oncoprotein CagA into host cells, H. pylori utilizes the outer membrane protein HopQ that binds to the cell surface protein CEACAM, which can be expressed on the gastric mucosa. Once bound, H. pylori activates a number of signaling pathways, including canonical and non-canonical NF-κB. We investigated whether HopQ-CEACAM interaction is involved in activating the non-canonical NF-κB signaling pathway. Different gastric cancer cells were infected with the H. pylori wild type, or HopQ mutant strains, and the activation of non-canonical NF-κB was related to CEACAM expression levels. The correlation between CEACAM levels and the activation of non-canonical NF-κB was confirmed in human gastric tissue samples. Taken together, our findings show that the HopQ-CEACAM interaction is important for activation of the non-canonical NF-κB pathway in gastric epithelial cells.

3.
Molecules ; 25(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365473

RESUMEN

The health effects of plant phenolics in vegetables and other food and the increasing evidence of the preventive potential of flavonoids in "Western Diseases" such as cancer, neurodegenerative diseases and others, have gained enormous interest. This prompted us to investigate the effects of 20 different flavonoids of the groups of flavones, flavonols and flavanones in 3D in vitro systems to determine their ability to inhibit the formation of circular chemorepellent induced defects (CCIDs) in monolayers of lymph- or blood-endothelial cells (LECs, BECs; respectively) by 12(S)-HETE, which is secreted by SW620 colon cancer spheroids. Several compounds reduced the spheroid-induced defects of the endothelial barriers. In the SW620/LEC model, apigenin and luteolin were most active and acacetin, nepetin, wogonin, pinocembrin, chrysin and hispidulin showed weak effects. In the SW620/BEC model acacetin, apigenin, luteolin, wogonin, hispidulin and chrysin exhibited weak activity.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Flavonoides/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Técnicas de Cocultivo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Flavonoides/química , Humanos , Neovascularización Patológica/metabolismo , Esferoides Celulares
4.
Liver Int ; 40(9): 2279-2290, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32378800

RESUMEN

BACKGROUND & AIMS: Recently, overexpression of the fibroblast growth factor receptor 3 (FGFR3) splice variants FGFR3-IIIb and FGFR3-IIIc was found in ~50% of hepatocellular carcinoma (HCC). Here, we aim to identify FGFR3-IIIb/IIIc ligands, which drive the progression of HCC. METHODS: FACS, MTT assay and/or growth curves served to identify the FGFR3-IIIb/IIIc ligand being most effective to induce growth of hepatoma/hepatocarcinoma cell lines, established from human HCC. The most potent FGF was characterized regarding the expression levels in epithelial and stromal cells of liver and HCC and impact on neoangiogenesis, clonogenicity and invasive growth of hepatoma/hepatocarcinoma cells. RESULTS: Among all FGFR3-IIIb/IIIc ligands tested, FGF9 was the most potent growth factor for hepatoma/hepatocarcinoma cells. Replication and/or sprouting of blood/lymphendothelial cells was stimulated as well. FGF9 occurred mainly in stromal cells of unaltered liver but in epithelial cells of HCC. Every fifth HCC exhibited overexpressed FGF9 and frequent co-upregulation of FGFR3-IIIb/IIIc. In hepatoma/hepatocarcinoma cells FGF9 enhanced the capability for clonogenicity and disintegration of the blood and lymphatic endothelium, being most pronounced in cells overexpressing FGFR3-IIIb or FGFR3-IIIc, respectively. Any of the FGF9 effects in hepatoma/hepatocarcinoma cells was blocked completely by applying the FGFR1-3-specific tyrosine kinase inhibitor BGJ398 or siFGFR3, while siFGFR1/2/4 were mostly ineffective. CONCLUSIONS: FGF9 acts via FGFR3-IIIb/IIIc to enhance growth and aggressiveness of HCC cells. Accordingly, blockade of the FGF9-FGFR3-IIIb/IIIc axis may be an efficient therapeutic option for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Epiteliales , Factor 9 de Crecimiento de Fibroblastos , Humanos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Regulación hacia Arriba
5.
Microorganisms ; 8(4)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218315

RESUMEN

Attachment to the host gastric mucosa is a key step in Helicobacter pylori infection. Recently, a novel adhesin, HopQ, was shown to bind distinct host CEACAM proteins-an interaction that was found to be essential for the translocation of CagA, a key virulence factor of H. pylori. The HopQ-CEACAM1 co-crystal structure revealed a binding mode dependent on loops in HopQ that are clasped by disulfide bonds. In this study, we investigated the importance of these cysteine residues for CEACAM1 engagement by H. pylori. We observed a loss of CEACAM1 binding and CagA translocation upon disruption of the disulfide bond in loop CL1 (connecting C103 to C132 in HopQ). Deletion of the Dsb-like oxidoreductase HP0231 did not affect cell surface expression of HopQ or alter the interaction of H. pylori with target cells. Although HP0231 deletion was previously described to impede CagA translocation, our results indicate that this occurs through a HopQ-independent mechanism. Together, our results open up new avenues to therapeutically target the HopQ-CEACAM1 interaction and reduce the burden of pathogenic H. pylori.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA