Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Commun Biol ; 7(1): 1285, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39379610

RESUMEN

Pediatric obesity rates have quadrupled in the United States, and deficits in higher-order cognition have been linked to obesity, though it remains poorly understood how deviations from normal body mass are related to the neural dynamics serving cognition in youth. Herein, we determine how age- and sex-adjusted measures of body mass index (zBMI) scale with neural activity in brain regions underlying fluid intelligence. Seventy-two youth aged 9-16 years underwent high-density magnetoencephalography while performing an abstract reasoning task. The resulting data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Whole-brain correlations with zBMI were subsequently conducted to quantify relationships between zBMI and neural activity serving abstract reasoning. Our results reveal that participants with higher zBMI exhibit attenuated theta (4-8 Hz) responses in both the left dorsolateral prefrontal cortex and left temporoparietal junction, and that weaker temporoparietal responses scale with slower reaction times. These findings suggest that higher zBMI values are associated with weaker theta oscillations in key brain regions and altered performance during an abstract reasoning task. Thus, future investigations should evaluate neurobehavioral function during abstract reasoning in youth with more severe obesity to identify the potential impact.


Asunto(s)
Inteligencia , Magnetoencefalografía , Humanos , Adolescente , Niño , Femenino , Masculino , Índice de Masa Corporal , Obesidad Infantil/fisiopatología , Obesidad Infantil/psicología , Encéfalo/fisiología , Encéfalo/fisiopatología , Cognición , Obesidad/fisiopatología
2.
Brain Commun ; 6(5): fcae332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39391334

RESUMEN

The altered sensorimotor cortical dynamics seen in youth with cerebral palsy appear to be tightly coupled with their motor performance errors and uncharacteristic mobility. Very few investigations have used these cortical dynamics as potential biomarkers to predict the extent of the motor performance changes that might be seen after physical therapy or in the design of new therapeutic interventions that target a youth's specific neurophysiological deficits. This cohort investigation was directed at evaluating the practice dependent changes in the sensorimotor cortical oscillations exhibited by youth with cerebral palsy as a step towards addressing this gap. We used magnetoencephalography to image the changes in the cortical oscillations before and after youth with cerebral palsy (N = 25; age = 15.2 ± 4.5 years; Gross Motor Function Classification Score Levels I-III) and neurotypical controls (N = 18; age = 14.6 ± 3.1 years) practiced a knee extension isometric target-matching task. Subsequently, structural equation modelling was used to assess the multivariate relationship between changes in beta (16-22 Hz) and gamma (66-82 Hz) oscillations and the motor performance after practice. The structural equation modelling results suggested youth with cerebral palsy who had a faster reaction time after practice tended to also have a stronger peri-movement beta oscillation in the sensorimotor cortices following practicing. The stronger beta oscillations were inferred to reflect greater certainty in the selected motor plan. The models also indicated that youth with cerebral palsy who overshot the targets less and matched the targets sooner tended to have a stronger execution-related gamma response in the sensorimotor cortices after practice. This stronger gamma response may represent improve activation of the sensorimotor neural generators and/or alterations in the GABAergic interneuron inhibitory-excitatory dynamics. These novel neurophysiological results provide a window on the potential neurological changes governing the practice-related outcomes in the context of the physical therapy.

3.
Neurotoxicology ; 102: 114-120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703899

RESUMEN

The refinement of brain morphology extends across childhood, and exposure to environmental toxins during this period may alter typical trends. Radon is a highly common radiologic toxin with a well-established role in cancer among adults. However, effects on developmental populations are understudied in comparison. This study investigated whether home radon exposure is associated with altered brain morphology in youths. Fifty-four participants (6-14 yrs, M=10.52 yrs, 48.15% male, 89% White) completed a T1-weighted MRI and home measures of radon. We observed a significant multivariate effect of home radon concentrations, which was driven by effects on GMV. Specifically, higher home radon was associated with smaller GMV (F=6.800, p=.012, ηp2=.13). Conversely, there was a trending radon-by-age interaction on WMV, which reached significance when accounting for the chronicity of radon exposure (F=4.12, p=.049, ηp2=.09). We found that youths with above-average radon exposure showed no change in WMV with age, whereas low radon was linked with normative, age-related WMV increases. These results suggest that everyday home radon exposure may alter sensitive structural brain development, impacting developmental trajectories in both gray and white matter.


Asunto(s)
Encéfalo , Exposición a Riesgos Ambientales , Imagen por Resonancia Magnética , Radón , Humanos , Masculino , Adolescente , Radón/efectos adversos , Femenino , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/efectos de la radiación , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire Interior/efectos adversos
4.
Neuroimage ; 292: 120606, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604538

RESUMEN

Radon is a naturally occurring gas that contributes significantly to radiation in the environment and is the second leading cause of lung cancer globally. Previous studies have shown that other environmental toxins have deleterious effects on brain development, though radon has not been studied as thoroughly in this context. This study examined the impact of home radon exposure on the neural oscillatory activity serving attention reorientation in youths. Fifty-six participants (ages 6-14 years) completed a classic Posner cuing task during magnetoencephalography (MEG), and home radon levels were measured for each participant. Time-frequency spectrograms indicated stronger theta (3-7 Hz, 300-800 ms), alpha (9-13 Hz, 400-900 ms), and beta responses (14-24 Hz, 400-900 ms) during the task relative to baseline. Source reconstruction of each significant oscillatory response was performed, and validity maps were computed by subtracting the task conditions (invalidly cued - validly cued). These validity maps were examined for associations with radon exposure, age, and their interaction in a linear regression design. Children with greater radon exposure showed aberrant oscillatory activity across distributed regions critical for attentional processing and attention reorientation (e.g., dorsolateral prefrontal cortex, and anterior cingulate cortex). Generally, youths with greater radon exposure exhibited a reverse neural validity effect in almost all regions and showed greater overall power relative to peers with lesser radon exposure. We also detected an interactive effect between radon exposure and age where youths with greater radon exposure exhibited divergent developmental trajectories in neural substrates implicated in attentional processing (e.g., bilateral prefrontal cortices, superior temporal gyri, and inferior parietal lobules). These data suggest aberrant, but potentially compensatory neural processing as a function of increasing home radon exposure in areas critical for attention and higher order cognition.


Asunto(s)
Atención , Magnetoencefalografía , Radón , Humanos , Adolescente , Niño , Masculino , Femenino , Radón/toxicidad , Radón/efectos adversos , Atención/efectos de la radiación , Atención/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Encéfalo/efectos de la radiación , Ondas Encefálicas/efectos de la radiación , Ondas Encefálicas/fisiología , Ondas Encefálicas/efectos de los fármacos , Orientación/fisiología
5.
Dev Cogn Neurosci ; 66: 101371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582064

RESUMEN

Throughout childhood and adolescence, the brain undergoes significant structural and functional changes that contribute to the maturation of multiple cognitive domains, including selective attention. Selective attention is crucial for healthy executive functioning and while key brain regions serving selective attention have been identified, their age-related changes in neural oscillatory dynamics and connectivity remain largely unknown. We examined the developmental sensitivity of selective attention circuitry in 91 typically developing youth aged 6 - 13 years old. Participants completed a number-based Simon task while undergoing magnetoencephalography (MEG) and the resulting data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and task-related peak voxels in the occipital, parietal, and cerebellar cortices were used as seeds for subsequent whole-brain connectivity analyses in the alpha and gamma range. Our key findings revealed developmentally sensitive connectivity profiles in multiple regions crucial for selective attention, including the temporoparietal junction (alpha) and prefrontal cortex (gamma). Overall, these findings suggest that brain regions serving selective attention are highly sensitive to developmental changes during the pubertal transition period.

6.
Front Psychol ; 15: 1330469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469220

RESUMEN

Introduction: It is well-established that chronic exposure to environmental toxins can have adverse effects on neuropsychological health, particularly in developing youths. However, home radon, a ubiquitous radiotoxin, has been seldom studied in this context. In the present study, we investigated the degree to which chronic everyday home radon exposure was associated with alterations in transdiagnostic mental health outcomes. Methods: A total of 59 children and adolescents ages 6- to 14-years-old (M = 10.47 years, SD = 2.58; 28 males) completed the study. Parents completed questionnaires detailing aspects of attention and executive function. We used a principal components analysis to derive three domains of neuropsychological functioning: 1) task-based executive function skills, 2) self-and emotion-regulation abilities, and 3) inhibitory control. Additionally, parents completed a home radon test kit and provided information on how long their child had lived in the tested home. We computed a radon exposure index per person based on the duration of time that the child had lived in the home and their measured home radon concentration. Youths were divided into terciles based on their radon exposure index score. Using a MANCOVA design, we determined whether there were differences in neuropsychological domain scores across the three groups, controlling for age, sex, and socioeconomic status. Results: There was a significant multivariate effect of radon group on neuropsychological dysfunction (λ = 0.77, F = 2.32, p = 0.038, ηp2 = 0.12). Examination of univariate effects revealed specific increases in self-and emotion-regulation dysfunction among the youths with the greatest degree of chronic home radon exposure (F = 7.21, p = 0.002, ηp2 = 0.21). There were no significant differences by group in the other tested domains. Discussion: The data suggest potential specificity in the neurotoxic effects of everyday home radon exposure in developing youths, with significant aberrations in self-and emotion-regulation faculties. These findings support the need for better public awareness and public health policy surrounding home radon safety and mitigation strategies.

7.
Neurobiol Stress ; 29: 100599, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38213830

RESUMEN

Background: Psychosocial distress among youth is a major public health issue characterized by disruptions in cognitive control processing. Using the National Institute of Mental Health's Research Domain Criteria (RDoC) framework, we quantified multidimensional neural oscillatory markers of psychosocial distress serving cognitive control in youth. Methods: The sample consisted of 39 peri-adolescent participants who completed the NIH Toolbox Emotion Battery (NIHTB-EB) and the Eriksen flanker task during magnetoencephalography (MEG). A psychosocial distress index was computed with exploratory factor analysis using assessments from the NIHTB-EB. MEG data were analyzed in the time-frequency domain and peak voxels from oscillatory maps depicting the neural cognitive interference effect were extracted for voxel time series analyses to identify spontaneous and oscillatory aberrations in dynamics serving cognitive control as a function of psychosocial distress. Further, we quantified the relationship between psychosocial distress and dynamic functional connectivity between regions supporting cognitive control. Results: The continuous psychosocial distress index was strongly associated with validated measures of pediatric psychopathology. Theta-band neural cognitive interference was identified in the left dorsolateral prefrontal cortex (dlPFC) and middle cingulate cortex (MCC). Time series analyses of these regions indicated that greater psychosocial distress was associated with elevated spontaneous activity in both the dlPFC and MCC and blunted theta oscillations in the MCC. Finally, we found that stronger phase coherence between the dlPFC and MCC was associated with greater psychosocial distress. Conclusions: Greater psychosocial distress was marked by alterations in spontaneous and oscillatory theta activity serving cognitive control, along with hyperconnectivity between the dlPFC and MCC.

8.
Neuroscience ; 536: 92-103, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37996052

RESUMEN

Emerging evidence indicates that aberrations in sensorimotor cortical oscillations likely play a key role in uncharacteristic motor actions seen in cerebral palsy. This interpretation is largely centered on the assumption that the aberrant cortical oscillations primarily reflect the motor aspects, with less consideration of possible higher-order cognitive connections. To directly probe this view, we examined the impact of cognitive interference on the sensorimotor cortical oscillations seen in persons with cerebral palsy using magnetoencephalography. Persons with cerebral palsy (N = 26, 9-47 years old) and controls (N = 46, 11-49 years) underwent magnetoencephalographic imaging while completing an arrow-based version of the Eriksen flanker task. Structural equation modeling was used to evaluate the relationship between the extent of interference generated by the flanker task and the strength of the sensorimotor cortical oscillations and motor performance. Our results indicated that the impact of cognitive interference on beta and gamma oscillations moderated the interference effect on reaction times in persons with cerebral palsy, above and beyond that seen in controls. Overall, these findings suggest that alterations in sensorimotor oscillatory activity in those with cerebral palsy at least partly reflects top-down control influences on the motor system. Thus, suppression of distracting stimuli should be a consideration when evaluating altered motor actions in cerebral palsy.


Asunto(s)
Parálisis Cerebral , Corteza Sensoriomotora , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Magnetoencefalografía/métodos , Tiempo de Reacción
9.
Free Radic Biol Med ; 212: 322-329, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142954

RESUMEN

Even in the modern era of combination antiretroviral therapy, aberrations in motor control remain a predominant symptom contributing to age-related functional dependencies (e.g., neurocognitive impairment) in people with HIV (PWH). While recent evidence implicates aberrant mitochondrial redox environments in the modulation of neural oscillatory activity serving motor control in PWH, the contribution of important clinical and demographic factors on this bioenergetic-neural-behavioral pathway is unknown. Herein, we evaluate the predictive capacity of clinical metrics pertinent to HIV (e.g., CD4 nadir, time with viremia) and age on mitochondrial redox-regulated sensorimotor brain-behavior dynamics in 69 virally-suppressed PWH. We used state-of-the-art systems biology and neuroscience approaches, including Seahorse analyzer of mitochondrial energetics, EPR spectroscopy of intracellular oxidant levels, antioxidant activity assays pertinent to superoxide and hydrogen peroxide (H2O2) redox environments, and magnetoencephalographic (MEG) imaging to quantify sensorimotor oscillatory dynamics. Our results demonstrate differential effects of redox systems on the neural dynamics serving motor function in PWH. In addition, measures of immune stability and duration of compromise due to HIV had dissociable effects on this pathway, above and beyond the effects of age alone. Moreover, peripheral measures of antioxidant activity (i.e., superoxide dismutase) fully mediated the relationship between immune stability and current behavioral performance, indicative of persistent oxidative environments serving motor control in the presence of virologic suppression. Taken together, our data suggest that disease-related factors, in particular, are stronger predictors of current redox, neural and behavioral profiles serving motor function, which may serve as effective targets for alleviating HIV-specific alterations in cognitive-motor function in the future.


Asunto(s)
Antioxidantes , Infecciones por VIH , Humanos , Peróxido de Hidrógeno , Infecciones por VIH/tratamiento farmacológico , Oxidación-Reducción , Biomarcadores
10.
Hum Brain Mapp ; 44(17): 6043-6054, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811842

RESUMEN

The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.


Asunto(s)
Magnetoencefalografía , Testosterona , Adolescente , Humanos , Masculino , Femenino , Niño , Testosterona/farmacología , Imagen por Resonancia Magnética , Lóbulo Frontal , Corteza Prefrontal/diagnóstico por imagen , Encéfalo
11.
Exp Aging Res ; : 1-18, 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37660356

RESUMEN

Emotional intelligence includes an assortment of factors related to emotion function. Such factors involve emotion recognition (in this case via facial expression), emotion trait, reactivity, and regulation. We aimed to investigate how the subjective appraisals of emotional intelligence (i.e. trait, reactivity, and regulation) are associated with objective emotion recognition accuracy, and how these associations differ between young and older adults. Data were extracted from the CamCAN dataset (189 adults: 57 young/118 older) from assessments measuring these emotion constructs. Using linear regression models, we found that greater negative reactivity was associated with better emotion recognition accuracy among older adults, though the pattern was opposite for young adults with the greatest difference in disgust and surprise recognition. Positive reactivity and depression level predicted surprise recognition, with the associations significantly differing between the age groups. The present findings suggest the level to which older and young adults react to emotional stimuli differentially predicts their ability to correctly identify facial emotion expressions. Older adults with higher negative reactivity may be able to integrate their negative emotions effectively in order to recognize other's negative emotions more accurately. Alternatively, young adults may experience interference from negative reactivity, lowering their ability to recognize other's negative emotions.

12.
Dev Cogn Neurosci ; 63: 101288, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567094

RESUMEN

The neural and cognitive processes underlying the flexible allocation of attention undergo a protracted developmental course with changes occurring throughout adolescence. Despite documented age-related improvements in attentional reorienting throughout childhood and adolescence, the neural correlates underlying such changes in reorienting remain unclear. Herein, we used magnetoencephalography (MEG) to examine neural dynamics during a Posner attention-reorienting task in 80 healthy youth (6-14 years old). The MEG data were examined in the time-frequency domain and significant oscillatory responses were imaged in anatomical space. During the reorienting of attention, youth recruited a distributed network of regions in the fronto-parietal network, along with higher-order visual regions within the theta (3-7 Hz) and alpha-beta (10-24 Hz) spectral windows. Beyond the expected developmental improvements in behavioral performance, we found stronger theta oscillatory activity as a function of age across a network of prefrontal brain regions irrespective of condition, as well as more limited age- and validity-related effects for alpha-beta responses. Distinct brain-behavior associations between theta oscillations and attention-related symptomology were also uncovered across a network of brain regions. Taken together, these data are the first to demonstrate developmental effects in the spectrally-specific neural oscillations serving the flexible allocation of attention.


Asunto(s)
Encéfalo , Magnetoencefalografía , Humanos , Niño , Adolescente , Encéfalo/fisiología , Magnetoencefalografía/métodos , Atención/fisiología , Mapeo Encefálico/métodos
13.
Dev Psychopathol ; : 1-11, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615120

RESUMEN

Over the past decade, transdiagnostic indicators in relation to neurobiological processes have provided extensive insight into youth's risk for psychopathology. During development, exposure to childhood trauma and dysregulation (i.e., so-called AAA symptomology: anxiety, aggression, and attention problems) puts individuals at a disproportionate risk for developing psychopathology and altered network-level neural functioning. Evidence for the latter has emerged from resting-state fMRI studies linking mental health symptoms and aberrations in functional networks (e.g., cognitive control (CCN), default mode networks (DMN)) in youth, although few of these investigations have used longitudinal designs. Herein, we leveraged a three-year longitudinal study to identify whether traumatic exposures and concomitant dysregulation trigger changes in the developmental trajectories of resting-state functional networks involved in cognitive control (N = 190; 91 females; time 1 Mage = 11.81). Findings from latent growth curve analyses revealed that greater trauma exposure predicted increasing connectivity between the CCN and DMN across time. Greater levels of dysregulation predicted reductions in within-network connectivity in the CCN. These findings presented in typically developing youth corroborate connectivity patterns reported in clinical populations, suggesting there is predictive utility in using transdiagnostic indicators to forecast alterations in resting-state networks implicated in psychopathology.

14.
Dev Cogn Neurosci ; 61: 101257, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37236034

RESUMEN

Recent investigations have studied the development of motor-related oscillatory responses to delineate maturational changes from childhood to young adulthood. While these studies included youth during the pubertal transition period, none have probed the impact of testosterone levels on motor cortical dynamics and performance. We collected salivary testosterone samples and recorded magnetoencephalography during a complex motor sequencing task in 58 youth aged 9-15 years old. The relationships between testosterone, age, task behavior, and beta (15-23 Hz) oscillatory dynamics were examined using multiple mediation modeling. We found that testosterone mediated the effect of age on movement-related beta activity. We also found that the effect of age on movement duration was mediated by testosterone and reaction time. Interestingly, the relationships between testosterone and motor performance were not mediated by beta activity in the left primary motor cortex, which may indicate the importance of higher-order motor regions. Overall, our results suggest that testosterone has unique associations with neural and behavioral indices of complex motor performance, beyond those already characterized in the literature. These findings are the first to link developmental changes in testosterone levels to maturation of beta oscillatory dynamics serving complex motor planning and execution, and specific measures of motor performance.


Asunto(s)
Magnetoencefalografía , Corteza Motora , Humanos , Adolescente , Adulto Joven , Adulto , Niño , Magnetoencefalografía/métodos , Movimiento/fisiología , Tiempo de Reacción , Testosterona
15.
Dev Cogn Neurosci ; 60: 101216, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36857850

RESUMEN

The default mode network (DMN) plays a crucial role in internal self-processing, rumination, and social functions. Disruptions to DMN connectivity have been linked with early adversity and the emergence of psychopathology in adolescence and early adulthood. Herein, we investigate how subclinical psychiatric symptoms can impact DMN functional connectivity during the pubertal transition. Resting-state fMRI data were collected annually from 190 typically-developing youth (9-15 years-old) at three timepoints and within-network DMN connectivity was computed. We used latent growth curve modeling to determine how self-reported depressive and posttraumatic stress symptoms predicted rates of change in DMN connectivity over the three-year period. In the baseline model without predictors, we found no systematic changes in DMN connectivity over time. However, significant modulation emerged after adding psychopathology predictors; greater depressive symptomatology was associated with significant decreases in connectivity over time, whereas posttraumatic stress symptoms were associated with significant increases in connectivity over time. Follow-up analyses revealed that these effects were driven by connectivity changes involving the dorsal medial prefrontal cortex subnetwork. In conclusion, these data suggest that subclinical depressive and posttraumatic symptoms alter the trajectory of DMN connectivity, which may indicate that this network is a nexus of clinical significance in mental health disorders.


Asunto(s)
Problema de Conducta , Trastornos por Estrés Postraumático , Humanos , Adolescente , Adulto , Niño , Trastornos por Estrés Postraumático/patología , Red en Modo Predeterminado , Corteza Prefrontal , Imagen por Resonancia Magnética , Encéfalo , Mapeo Encefálico
16.
Brain Behav Immun ; 107: 265-275, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272499

RESUMEN

Despite virologic suppression, people living with HIV (PLWH) remain at risk for developing cognitive impairment, with aberrations in motor control being a predominant symptom leading to functional dependencies in later life. While the neuroanatomical bases of motor dysfunction have recently been illuminated, the underlying molecular processes remain poorly understood. Herein, we evaluate the predictive capacity of the mitochondrial redox environment on sensorimotor brain-behavior dynamics in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling. We used state-of-the-art approaches, including Seahorse Analyzer of mitochondrial function, electron paramagnetic resonance spectroscopy to measure superoxide levels, antioxidant activity assays and dynamic magnetoencephalographic imaging to quantify sensorimotor oscillatory dynamics. We observed differential modulation of sensorimotor brain-behavior relationships by superoxide and hydrogen peroxide-sensitive features of the redox environment in PLWH, while only superoxide-sensitive features were related to optimal oscillatory response profiles and better motor performance in controls. Moreover, these divergent pathways may be attributable to immediate, separable mechanisms of action within the redox environment seen in PLWH, as evidenced by mediation analyses. These findings suggest that mitochondrial redox parameters are important modulators of healthy and pathological oscillations in motor systems and behavior, serving as potential targets for remedying HIV-related cognitive-motor dysfunction in the future.


Asunto(s)
Infecciones por VIH , Estado de Salud , Humanos , Encéfalo , Mitocondrias
17.
Aging (Albany NY) ; 14(24): 9818-9831, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36534452

RESUMEN

BACKGROUND: Despite effective antiretroviral therapy, cognitive impairment and other aging-related comorbidities are more prevalent in people with HIV (PWH) than in the general population. Previous research examining DNA methylation has shown PWH exhibit accelerated biological aging. However, it is unclear how accelerated biological aging may affect neural oscillatory activity in virally suppressed PWH, and more broadly how such aberrant neural activity may impact neuropsychological performance. METHODS: In the present study, participants (n = 134) between the ages of 23 - 72 years underwent a neuropsychological assessment, a blood draw to determine biological age via DNA methylation, and a visuospatial processing task during magnetoencephalography (MEG). Our analyses focused on the relationship between biological age and oscillatory theta (4-8 Hz) and alpha (10 - 16 Hz) activity among PWH (n=65) and seronegative controls (n = 69). RESULTS: PWH had significantly elevated biological age when controlling for chronological age relative to controls. Biological age was differentially associated with theta oscillations in the left posterior cingulate cortex (PCC) and with alpha oscillations in the right medial prefrontal cortex (mPFC) among PWH and seronegative controls. Stronger alpha oscillations in the mPFC were associated with lower CD4 nadir and lower current CD4 counts, suggesting such responses were compensatory. Participants who were on combination antiretroviral therapy for longer had weaker theta oscillations in the PCC. CONCLUSIONS: These findings support the concept of interactions between biological aging and HIV status on the neural oscillatory dynamics serving visuospatial processing. Future work should elucidate the long-term trajectory and impact of accelerated aging on neural oscillatory dynamics in PWH.


Asunto(s)
Infecciones por VIH , Imagen por Resonancia Magnética , Humanos , Anciano , Magnetoencefalografía , Envejecimiento/fisiología , Infecciones por VIH/tratamiento farmacológico , Epigénesis Genética
18.
Neuroimage ; 264: 119745, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368502

RESUMEN

Puberty is a period of substantial hormonal fluctuations, and pubertal hormones can modulate structural and functional changes in the developing brain. Many previous studies have characterized the neural oscillatory responses serving movement, which include a beta event-related desynchronization (ERD) preceding movement onset, gamma and theta responses coinciding with movement execution, and a post-movement beta-rebound (PMBR) response following movement offset. While a few studies have investigated the developmental trajectories of these neural oscillations serving motor control, the impact of pubertal hormone levels on the maturation of these dynamics has not yet been examined. Since the timing and tempo of puberty varies greatly between individuals, pubertal hormones may uniquely impact the maturation of motor cortical oscillations distinct from other developmental metrics, such as age. In the current study we quantified these oscillations using magnetoencephalography (MEG) and utilized chronological age and measures of endogenous testosterone as indices of development during the transition from childhood to adolescence in 69 youths. Mediation analyses revealed complex maturation patterns for the beta ERD, in which testosterone predicted both spontaneous baseline and ERD power through direct and indirect effects. Age, but not pubertal hormones, predicted motor-related theta, and no relationships between oscillatory responses and developmental metrics were found for gamma or PMBR responses. These findings provide novel insight into how pubertal hormones affect motor-related oscillations, and highlight the continued development of motor cortical dynamics throughout the pubertal period.


Asunto(s)
Ritmo beta , Corteza Motora , Adolescente , Humanos , Niño , Ritmo beta/fisiología , Testosterona , Magnetoencefalografía , Corteza Motora/fisiología , Movimiento/fisiología , Congéneres de la Testosterona
19.
Conscious Cogn ; 106: 103429, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36306570

RESUMEN

Human visual processing involves the extraction of both global and local information from a visual stimulus. Such processing may be related to cognitive abilities, which is likely going to change over time as we age. We aimed to investigate the impact of healthy aging on the association between visual global vs local processing and intelligence. In this context, we collected behavioral data during a visual search task in 103 adults (50 younger/53 older). We extracted three metrics reflecting global advantage (faster global than local processing), and visual interference in detecting either local or global features (based on interfering visual distractors). We found that older, but not younger, adults with higher levels of fluid and crystallized intelligence showed stronger signs of global advantage and interference effects during local processing, respectively. The present findings also provide promising clues regarding how participants consider and process their visual world in healthy aging.


Asunto(s)
Inteligencia , Percepción Visual , Adulto , Humanos , Cognición
20.
Stress ; 25(1): 323-330, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168664

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic has caused massive disruptions to daily life in the United States, closing schools and businesses and increasing physical and social isolation, leading to deteriorations in mental health and well-being in people of all ages. Many studies have linked chronic stress with long-term changes in cortisol secretion, which has been implicated in many stress-related physical and mental health problems that commonly emerge in adolescence. However, the physiological consequences of the pandemic in youth remain understudied. Using hair cortisol concentrations (HCC), we quantified average longitudinal changes in cortisol secretion across a four-month period capturing before, during, and after the transition to pandemic-lockdown conditions in a sample of healthy youth (n = 49). Longitudinal changes in HCC were analyzed using linear mixed-effects models. Perceived levels of pandemic-related stress were measured and compared to the physiological changes in HCC. In children and adolescents, cortisol levels significantly increased across the course of the pandemic. These youth reported a multitude of stressors during this time, although changes in HCC were not associated with self-reported levels of COVID-19-related distress. We provide evidence that youth are experiencing significant physiological changes in cortisol activity across the COVID-19 pandemic, yet these biological responses are not associated with perceived stress levels. Youth may be especially vulnerable to the deleterious impacts of chronic cortisol exposure due to their current status in the sensitive periods for development, and the incongruency between biological and psychological stress responses may further complicate these developmental problems.


Asunto(s)
COVID-19 , Hidrocortisona , Adolescente , Niño , Control de Enfermedades Transmisibles , Humanos , Pandemias , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA