Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907033

RESUMEN

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.

2.
Nat Commun ; 15(1): 3775, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710701

RESUMEN

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Asunto(s)
Dominio Catalítico , Microscopía por Crioelectrón , Proteína 1 que Contiene Dominios SAM y HD , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/química , Proteína 1 que Contiene Dominios SAM y HD/genética , Regulación Alostérica , Humanos , Estructura Cuaternaria de Proteína , Catálisis , Biocatálisis , VIH-1/metabolismo , Modelos Moleculares
3.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38774451

RESUMEN

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
4.
Nature ; 629(8012): 697-703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658755

RESUMEN

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Asunto(s)
Microscopía por Crioelectrón , ADN de Cadena Simple , Complejos Multiproteicos , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Humanos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Modelos Moleculares , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/ultraestructura , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Sitios de Unión
5.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38237141

RESUMEN

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
6.
J Mol Cell Biol ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037430

RESUMEN

Lenacapavir, targeting the HIV-1 capsid, is the first-in-class antiretroviral drug recently approved for clinical use. The development of Lenacapavir is attributed to the remarkable progress in our understanding of the capsid protein made during the last few years. Considered little more than a component of the virus shell to be shed early during infection, capsid has been found to be a key player in the HIV-1 life cycle by interacting with multiple host cell factors, entering the nucleus, and directing integration. Here, we describe the key advances that led to this "capsid revolution".

7.
Nat Commun ; 14(1): 6809, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884503

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the clinic to treat BRCA-deficient breast, ovarian and prostate cancers. As their efficacy is potentiated by loss of the nucleotide salvage factor DNPH1 there is considerable interest in the development of highly specific small molecule DNPH1 inhibitors. Here, we present X-ray crystal structures of dimeric DNPH1 bound to its substrate hydroxymethyl deoxyuridine monophosphate (hmdUMP). Direct interaction with the hydroxymethyl group is important for substrate positioning, while conserved residues surrounding the base facilitate target discrimination. Glycosidic bond cleavage is driven by a conserved catalytic triad and proceeds via a two-step mechanism involving formation and subsequent disruption of a covalent glycosyl-enzyme intermediate. Mutation of a previously uncharacterised yet conserved glutamate traps the intermediate in the active site, demonstrating its role in the hydrolytic step. These observations define the enzyme's catalytic site and mechanism of hydrolysis, and provide important insights for inhibitor discovery.


Asunto(s)
Nucleótidos , Humanos , Modelos Moleculares , Hidrólisis , Dominio Catalítico , Catálisis
8.
Cell Rep Methods ; 3(6): 100508, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426752

RESUMEN

Understanding how the RNA-binding domains of a protein regulator are used to recognize its RNA targets is a key problem in RNA biology, but RNA-binding domains with very low affinity do not perform well in the methods currently available to characterize protein-RNA interactions. Here, we propose to use conservative mutations that enhance the affinity of RNA-binding domains to overcome this limitation. As a proof of principle, we have designed and validated an affinity-enhanced K-homology (KH) domain mutant of the fragile X syndrome protein FMRP, a key regulator of neuronal development, and used this mutant to determine the domain's sequence preference and to explain FMRP recognition of specific RNA motifs in the cell. Our results validate our concept and our nuclear magnetic resonance (NMR)-based workflow. While effective mutant design requires an understanding of the underlying principles of RNA recognition by the relevant domain type, we expect the method will be used effectively in many RNA-binding domains.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , ARN , ARN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas/genética , Mutación , Motivos de Unión al ARN/genética
9.
Nucleic Acids Res ; 51(16): 8774-8786, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377445

RESUMEN

m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.


Asunto(s)
Proteínas Aviares , Proteínas de Unión al ARN , Adenosina/metabolismo , Proteínas Aviares/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Proteínas/genética , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Pollos
10.
Retrovirology ; 20(1): 5, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127613

RESUMEN

BACKGROUND: SAMHD1 is a deoxynucleotide triphosphohydrolase that restricts replication of HIV-1 in differentiated leucocytes. HIV-1 is not restricted in cycling cells and it has been proposed that this is due to phosphorylation of SAMHD1 at T592 in these cells inactivating the enzymatic activity. To distinguish between theories for how SAMHD1 restricts HIV-1 in differentiated but not cycling cells, we analysed the effects of substitutions at T592 on restriction and dNTP levels in both cycling and differentiated cells as well as tetramer stability and enzymatic activity in vitro. RESULTS: We first showed that HIV-1 restriction was not due to SAMHD1 nuclease activity. We then characterised a panel of SAMHD1 T592 mutants and divided them into three classes. We found that a subset of mutants lost their ability to restrict HIV-1 in differentiated cells which generally corresponded with a decrease in triphosphohydrolase activity and/or tetramer stability in vitro. Interestingly, no T592 mutants were able to restrict WT HIV-1 in cycling cells, despite not being regulated by phosphorylation and retaining their ability to hydrolyse dNTPs. Lowering dNTP levels by addition of hydroxyurea did not give rise to restriction. Compellingly however, HIV-1 RT mutants with reduced affinity for dNTPs were significantly restricted by wild-type and T592 mutant SAMHD1 in both cycling U937 cells and Jurkat T-cells. Restriction correlated with reverse transcription levels. CONCLUSIONS: Altogether, we found that the amino acid at residue 592 has a strong effect on tetramer formation and, although this is not a simple "on/off" switch, this does correlate with the ability of SAMHD1 to restrict HIV-1 replication in differentiated cells. However, preventing phosphorylation of SAMHD1 and/or lowering dNTP levels by adding hydroxyurea was not enough to restore restriction in cycling cells. Nonetheless, lowering the affinity of HIV-1 RT for dNTPs, showed that restriction is mediated by dNTP levels and we were able to observe for the first time that SAMHD1 is active and capable of inhibiting HIV-1 replication in cycling cells, if the affinity of RT for dNTPs is reduced. This suggests that the very high affinity of HIV-1 RT for dNTPs prevents HIV-1 restriction by SAMHD1 in cycling cells.


Asunto(s)
VIH-1 , Proteínas de Unión al GTP Monoméricas , Humanos , VIH-1/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Fosforilación , Células U937 , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo
11.
mBio ; 14(1): e0356022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744954

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Humanos , Regulación Alostérica , Inhibidores de Integrasa VIH/farmacología , Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico
12.
J Virol ; 97(1): e0087222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633408

RESUMEN

The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.


Asunto(s)
Evolución Molecular , Señales de Exportación Nuclear , Proteínas de Unión al ARN , Ubiquitina-Proteína Ligasas , Animales , Proteínas Cullin/metabolismo , Interferones/genética , ARN Viral/genética , Replicación Viral/fisiología , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/genética
13.
J Mol Biol ; 434(16): 167691, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35738429

RESUMEN

Solution and solid-state NMR spectroscopy are highly complementary techniques for studying structure and dynamics in very high molecular weight systems. Here we have analysed the dynamics of HIV-1 capsid (CA) assemblies in presence of the cofactors IP6 and ATPγS and the host-factor CPSF6 using a combination of solution state and cross polarisation magic angle spinning (CP-MAS) solid-state NMR. In particular, dynamical effects on ns to µs and µs to ms timescales are observed revealing diverse motions in assembled CA. Using CP-MAS NMR, we exploited the sensitivity of the amide/Cα-Cß backbone chemical shifts in DARR and NCA spectra to observe the plasticity of the HIV-1 CA tubular assemblies and also map the binding of cofactors and the dynamics of cofactor-CA complexes. In solution, we measured how the addition of host- and co-factors to CA -hexamers perturbed the chemical shifts and relaxation properties of CA-Ile and -Met methyl groups using transverse-relaxation-optimized NMR spectroscopy to exploit the sensitivity of methyl groups as probes in high-molecular weight proteins. These data show how dynamics of the CA protein assembly over a range of spatial and temporal scales play a critical role in CA function. Moreover, we show that binding of IP6, ATPγS and CPSF6 results in local chemical shift as well as dynamic changes for a significant, contiguous portion of CA, highlighting how allosteric pathways communicate ligand interactions between adjacent CA protomers.


Asunto(s)
Proteínas de la Cápside , Cápside , VIH-1 , Ensamble de Virus , Regulación Alostérica , Cápside/química , Cápside/fisiología , Proteínas de la Cápside/química , VIH-1/química , VIH-1/fisiología , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos
14.
Nat Commun ; 13(1): 2416, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504909

RESUMEN

A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.


Asunto(s)
ADN Viral , Integrasas , Animales , Humanos , Dominio Catalítico , ADN Viral/metabolismo , Integrasas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Modelos Moleculares , Retroviridae/genética , Ovinos/genética , Integración Viral
15.
Curr Biol ; 32(7): R329-R331, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35413263

RESUMEN

Eukaryotes are continually subjected to viral infections and, in response, have evolved a wide range of defence mechanisms. Two recent studies show how a duplicated copy of a cellular protein needed for cell growth and virus egress evolved to inhibit viruses while preserving cell viability.


Asunto(s)
Virosis , Virus , Humanos , Liberación del Virus
16.
Nat Commun ; 12(1): 5590, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552077

RESUMEN

Excessive replication of Saccharomyces cerevisiae Ty1 retrotransposons is regulated by Copy Number Control, a process requiring the p22/p18 protein produced from a sub-genomic transcript initiated within Ty1 GAG. In retrotransposition, Gag performs the capsid functions required for replication and re-integration. To minimize genomic damage, p22/p18 interrupts virus-like particle function by interaction with Gag. Here, we present structural, biophysical and genetic analyses of p18m, a minimal fragment of Gag that restricts transposition. The 2.8 Å crystal structure of p18m reveals an all α-helical protein related to mammalian and insect ARC proteins. p18m retains the capacity to dimerise in solution and the crystal structures reveal two exclusive dimer interfaces. We probe our findings through biophysical analysis of interface mutants as well as Ty1 transposition and p18m restriction in vivo. Our data provide insight into Ty1 Gag structure and suggest how p22/p18 might function in restriction through a blocking-of-assembly mechanism.


Asunto(s)
Variaciones en el Número de Copia de ADN , Productos del Gen gag/química , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de la Apoptosis/química , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Cristalografía por Rayos X , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
PLoS Pathog ; 17(9): e1009484, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543344

RESUMEN

The capsid (CA) lattice of the HIV-1 core plays a key role during infection. From the moment the core is released into the cytoplasm, it interacts with a range of cellular factors that, ultimately, direct the pre-integration complex to the integration site. For integration to occur, the CA lattice must disassemble. Early uncoating or a failure to do so has detrimental effects on virus infectivity, indicating that an optimal stability of the viral core is crucial for infection. Here, we introduced cysteine residues into HIV-1 CA in order to induce disulphide bond formation and engineer hyper-stable mutants that are slower or unable to uncoat, and then followed their replication. From a panel of mutants, we identified three with increased capsid stability in cells and found that, whilst the M68C/E212C mutant had a 5-fold reduction in reverse transcription, two mutants, A14C/E45C and E180C, were able to reverse transcribe to approximately WT levels in cycling cells. Moreover, these mutants only had a 5-fold reduction in 2-LTR circle production, suggesting that not only could reverse transcription complete in hyper-stable cores, but that the nascent viral cDNA could enter the nuclear compartment. Furthermore, we observed A14C/E45C mutant capsid in nuclear and chromatin-associated fractions implying that the hyper-stable cores themselves entered the nucleus. Immunofluorescence studies revealed that although the A14C/E45C mutant capsid reached the nuclear pore with the same kinetics as wild type capsid, it was then retained at the pore in association with Nup153. Crucially, infection with the hyper-stable mutants did not promote CPSF6 re-localisation to nuclear speckles, despite the mutant capsids being competent for CPSF6 binding. These observations suggest that hyper-stable cores are not able to uncoat, or remodel, enough to pass through or dissociate from the nuclear pore and integrate successfully. This, is turn, highlights the importance of capsid lattice flexibility for nuclear entry. In conclusion, we hypothesise that during a productive infection, a capsid remodelling step takes place at the nuclear pore that releases the core complex from Nup153, and relays it to CPSF6, which then localises it to chromatin ready for integration.


Asunto(s)
Proteínas de la Cápside/metabolismo , VIH-1/fisiología , Poro Nuclear , Integración Viral/fisiología , Replicación Viral/fisiología , Células HEK293 , Células HeLa , Humanos
18.
PLoS Pathog ; 17(8): e1009775, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34339457

RESUMEN

Viruses have evolved means to manipulate the host's ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle regulation. CRL4DCAF1 specificity modulation by Vpx and Vpr from certain simian immunodeficiency viruses (SIV) leads to recruitment, poly-ubiquitylation and subsequent proteasomal degradation of the host restriction factor SAMHD1, resulting in enhanced virus replication in differentiated cells. To unravel the mechanism of SIV Vpr-induced SAMHD1 ubiquitylation, we conducted integrative biochemical and structural analyses of the Vpr protein from SIVs infecting Cercopithecus cephus (SIVmus). X-ray crystallography reveals commonalities between SIVmus Vpr and other members of the Vpx/Vpr family with regard to DCAF1 interaction, while cryo-electron microscopy and cross-linking mass spectrometry highlight a divergent molecular mechanism of SAMHD1 recruitment. In addition, these studies demonstrate how SIVmus Vpr exploits the dynamic architecture of the multi-subunit CRL4DCAF1 assembly to optimise SAMHD1 ubiquitylation. Together, the present work provides detailed molecular insight into variability and species-specificity of the evolutionary arms race between host SAMHD1 restriction and lentiviral counteraction through Vpx/Vpr proteins.


Asunto(s)
Proteínas Cullin/química , Productos del Gen vpr/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Proteína 1 que Contiene Dominios SAM y HD/química , Ubiquitinación , Replicación Viral , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Proteínas Cullin/metabolismo , Productos del Gen vpr/genética , Proteína NEDD8/química , Proteína NEDD8/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
19.
Biochemistry ; 60(21): 1682-1698, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988981

RESUMEN

SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.


Asunto(s)
Desoxirribonucleótidos/química , Proteína 1 que Contiene Dominios SAM y HD/antagonistas & inhibidores , Proteína 1 que Contiene Dominios SAM y HD/química , Regulación Alostérica , Catálisis , Dominio Catalítico , Cristalografía por Rayos X/métodos , Nucleótidos de Desoxiguanina/química , Desoxirribonucleótidos/metabolismo , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Replicación Viral/fisiología
20.
Science ; 372(6538): 156-165, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33833118

RESUMEN

Mutations in the BRCA1 or BRCA2 tumor suppressor genes predispose individuals to breast and ovarian cancer. In the clinic, these cancers are treated with inhibitors that target poly(ADP-ribose) polymerase (PARP). We show that inhibition of DNPH1, a protein that eliminates cytotoxic nucleotide 5-hydroxymethyl-deoxyuridine (hmdU) monophosphate, potentiates the sensitivity of BRCA-deficient cells to PARP inhibitors (PARPi). Synthetic lethality was mediated by the action of SMUG1 glycosylase on genomic hmdU, leading to PARP trapping, replication fork collapse, DNA break formation, and apoptosis. BRCA1-deficient cells that acquired resistance to PARPi were resensitized by treatment with hmdU and DNPH1 inhibition. Because genomic hmdU is a key determinant of PARPi sensitivity, targeting DNPH1 provides a promising strategy for the hypersensitization of BRCA-deficient cancers to PARPi therapy.


Asunto(s)
Antineoplásicos/farmacología , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Apoptosis , Sistemas CRISPR-Cas , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Neoplasias/metabolismo , Desoxicitidina Monofosfato/análogos & derivados , Desoxicitidina Monofosfato/metabolismo , Desoxicitidina Monofosfato/farmacología , Nucleótidos de Desoxiuracil/metabolismo , Resistencia a Antineoplásicos , Genes BRCA1 , Humanos , Hidrólisis , N-Glicosil Hidrolasas/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mutaciones Letales Sintéticas , Timidina/análogos & derivados , Timidina/antagonistas & inhibidores , Timidina/metabolismo , Timidina/farmacología , Uracil-ADN Glicosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA