Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(6): 3425-32, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19073609

RESUMEN

O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. We have previously shown a significant induction of O-GlcNAc modification under conditions of glucose deprivation. Increased O-GlcNAc modification was mediated by increased mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (ncOGT). We have investigated the mechanism mediating ncOGT induction with glucose deprivation. The signal does not appear to be general energy depletion because no differences in AMP-dependent kinase protein levels or phosphorylation were observed between glucose-deprived and normal glucose-treated cells. However, treatment of glucose-deprived cells with a small dose (1 mm) of glucosamine blocked the induction of ncOGT mRNA and subsequent increase in O-GlcNAc protein modification, suggesting that decreased hexosamine flux is the signal for ncOGT up-regulation. Consistent with this, treatment of glucose-deprived cells with an inhibitor of O-GlcNAcase (O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenyl carbamat) completely prevented the subsequent up-regulation of ncOGT. Glucosamine treatment also resulted in a 40% rescue of the down-regulation of glycogen synthase activity normally seen after glucose deprivation. We conclude that deglycosylation of proteins within the first few hours of glucose deprivation promotes ncOGT induction. These findings suggest a novel negative feedback regulatory loop for OGT and O-GlcNAc regulation.


Asunto(s)
Acetilglucosamina/metabolismo , Glucosa/metabolismo , N-Acetilglucosaminiltransferasas/biosíntesis , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilglucosamina/farmacología , Línea Celular Tumoral , Núcleo Celular/enzimología , Citoplasma/enzimología , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Glucógeno Sintasa/biosíntesis , Humanos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Mensajero/biosíntesis
2.
J Biol Chem ; 283(10): 6050-7, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18174169

RESUMEN

O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. Here we report on regulation of O-GlcNAcylation over a broad range of glucose concentrations. We have discovered a significant induction of O-GlcNAc modification of a limited number of proteins under conditions of glucose deprivation. Beginning 12 h after treatment, glucose-deprived human hepatocellular carcinoma (HepG2) cells demonstrate a 7.8-fold increase in total O-GlcNAc modification compared with cells cultured in normal glucose (5 mm; p = 0.008). Some of the targets of glucose deprivation-induced O-GlcNAcylation are distinct from those modified in response to high glucose (20 mm) or glucosamine (10 mm) treatment, suggesting differential targeting with glucose deprivation and glucose excess. O-GlcNAcylation of glycogen synthase is significantly increased with glucose deprivation, and this O-GlcNAc increase contributes to a 60% decrease (p = 0.004) in glycogen synthase activity. Increased O-GlcNAc modification is not mediated by increased UDP-GlcNAc, the rate-limiting substrate for O-GlcNAcylation. Rather, the mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (OGT) increases 3.4-fold within 6 h of glucose deprivation (p = 0.006). Within 12 h, OGT protein increases 1.7-fold (p = 0.01) compared with normal glucose-treated cells. In addition, 12-h glucose deprivation leads to a 49% decrease in O-GlcNAcase protein levels (p = 0.03). We conclude that increased O-GlcNAc modification stimulated by glucose deprivation results from increased OGT and decreased O-GlcNAcase levels and that these changes affect cell metabolism, thus inactivating glycogen synthase.


Asunto(s)
Acetilglucosamina/metabolismo , Glucosa/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Línea Celular Tumoral , Glucosamina/metabolismo , Glucosa/deficiencia , Glucógeno Sintasa/metabolismo , Glicosilación , Humanos , Factores de Tiempo
3.
J Biol Chem ; 278(12): 10022-7, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12510058

RESUMEN

We have investigated the mechanism by which high concentrations of glucose inhibit insulin stimulation of glycogen synthase. In NIH-3T3-L1 adipocytes cultured in low glucose (LG; 2.5 mm), the half-maximal activation concentration (A(0.5)) of glucose 6-phosphate was 162 +/- 15 microm. Exposure to either high glucose (HG; 20 mm) or glucosamine (GlcN; 10 mm) increased the A(0.5) to 558 +/- 61 or 612 +/- 34 microm. Insulin treatment with LG reduced the A(0.5) to 96 +/- 10 microm, but cells cultured with HG or GlcN were insulin-resistant (A(0.5) = 287 +/- 27 or 561 +/- 77 microm). Insulin resistance was not explained by increased phosphorylation of synthase. In fact, culture with GlcN decreased phosphorylation to 61% of the levels seen in cells cultured in LG. Hexosamine flux and subsequent enzymatic protein O-glycosylation have been postulated to mediate nutrient sensing and insulin resistance. Glycogen synthase is modified by O-linked N-acetylglucosamine, and the level of glycosylation increased in cells treated with HG or GlcN. Treatment of synthase in vitro with protein phosphatase 1 increased basal synthase activity from cells cultured in LG to 54% of total activity but was less effective with synthase from cells cultured in HG or GlcN, increasing basal activity to only 13 or 16%. After enzymatic removal of O-GlcNAc, however, subsequent digestion with phosphatase increased basal activity to over 73% for LG, HG, and GlcN. We conclude that O-GlcNAc modification of glycogen synthase results in the retention of the enzyme in a glucose 6-phosphate-dependent state and contributes to the reduced activation of the enzyme in insulin resistance.


Asunto(s)
Acetilglucosamina/metabolismo , Glucógeno Sintasa/metabolismo , Resistencia a la Insulina , Células 3T3 , Animales , Células Cultivadas , Activación Enzimática , Glucosamina/farmacología , Glucosa/farmacología , Glicosilación , Ratones , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA