Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804108

RESUMEN

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Asunto(s)
Embryophyta , Microbiota , Microbiología del Suelo , Biodiversidad , Suelo/química
2.
Front Microbiol ; 15: 1372938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774505

RESUMEN

Background: The cultivation of short-rotation tree species on non-forest land is increasing due to the growing demand for woody biomass for the future bioeconomy and to mitigate climate change impacts. However, forest plantations are often seen as a trade-off between climate benefits and low biodiversity. The diversity and composition of soil fungal biota in plantations of hybrid aspen, one of the most planted tree species for short-rotation forestry in Northern Europe, are poorly studied. Methods: The goal of this study was to obtain baseline knowledge about the soil fungal biota and the edaphic, floristic and management factors that drive fungal richness and communities in 18-year-old hybrid aspen plantations on former agricultural soils and compare the fungal biota with those of European aspen stands on native forest land in a 130-year chronosequence. Sites were categorized as hybrid aspen (17-18-year-old plantations) and native aspen stands of three age classes (8-29, 30-55, and 65-131-year-old stands). High-throughput sequencing was applied to soil samples to investigate fungal diversity and assemblages. Results: Native aspen forests showed a higher ectomycorrhizal (EcM) fungal OTU richness than plantations, regardless of forest age. Short-distance type EcM genera dominated in both plantations and forests. The richness of saprotrophic fungi was similar between native forest and plantation sites and was highest in the middle-aged class (30-55-year-old stands) in the native aspen stands. The fungal communities of native forests and plantations were significantly different. Community composition varied more, and the natural forest sites were more diverse than the relatively homogeneous plantations. Soil pH was the best explanatory variable to describe soil fungal communities in hybrid aspen stands. Soil fungal community composition did not show any clear patterns between the age classes of native aspen stands. Conclusion: We conclude that edaphic factors are more important in describing fungal communities in both native aspen forest sites and hybrid aspen plantation sites than forest thinning, age, or former land use for plantations. Although first-generation hybrid aspen plantations and native forests are similar in overall fungal diversity, their taxonomic and functional composition is strikingly different. Therefore, hybrid aspen plantations can be used to reduce felling pressure on native forests; however, our knowledge is still insufficient to conclude that plantations could replace native aspen forests from the soil biodiversity perspective.

3.
Environ Microbiol Rep ; 16(2): e13253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575147

RESUMEN

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.


Asunto(s)
Micorrizas , Micorrizas/genética , Árboles/microbiología , Filogenia , Biodiversidad , Hongos/genética , Plantas/microbiología , Suelo , Microbiología del Suelo
4.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493170

RESUMEN

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Asunto(s)
Micobioma , Carbono , Microbiología del Suelo , Bosques , Árboles/microbiología , Suelo
5.
Environ Microbiol ; 26(2): e16572, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195068

RESUMEN

Factors regulating the diversity and composition of soil microbial communities include soil properties, land cover and climate. How these factors interact at large scale remains poorly investigated. Here, we used an extensive dataset including 715 locations from 24 European countries to investigate the interactive effects of climatic region, land cover and pH on soil bacteria and fungi. We found that differences in microbial diversity and community composition between land cover types depended on the climatic region. In Atlantic, Boreal and Continental regions, microbial richness was higher in croplands and grasslands than woodlands while richness in Mediterranean areas did not vary significantly among land cover types. These differences were further related to soil pH, as a driver of bacterial and fungal richness in most climatic regions, but the interaction of pH with land cover depended on the region. Microbial community composition differed the most between croplands and woodlands in all regions, mainly due to differences in pH. In the Mediterranean region, bacterial communities in woodlands and grasslands were the most similar, whereas in other regions, grassland and cropland-associated bacteria showed more similarity. Overall, we showed that key factors interact in shaping soil microbial communities in a climate-dependent way at large scale.


Asunto(s)
Microbiología del Suelo , Suelo , Suelo/química , Bacterias/genética , Bosques , Concentración de Iones de Hidrógeno , Pradera
6.
Nucleic Acids Res ; 52(D1): D791-D797, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953409

RESUMEN

UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into ∼2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Hongos , ADN Espaciador Ribosómico , Hongos/genética , Biodiversidad , ADN de Hongos , Filogenia
7.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-38012113

RESUMEN

Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.


Asunto(s)
Microbiota , Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , Plantas/microbiología , Hojas de la Planta/microbiología , Péptidos , Raíces de Plantas/microbiología
8.
Nat Commun ; 14(1): 6482, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838711

RESUMEN

Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.


Asunto(s)
Ecosistema , Bosques , Hongos , Clima , Biodiversidad
9.
Nat Food ; 4(11): 996-1006, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37904026

RESUMEN

Exploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown. Here we constructed a PBB database to couple microbial taxonomy with their plant-beneficial traits and analysed the global atlas of potential PBB from 4,245 soil samples. We show that the diversity of PBB peaks in low-latitude regions, following a strong latitudinal diversity gradient. The distribution of potential PBB was primarily governed by environmental filtering, which was mainly determined by local climate. Our projections showed that fossil-fuel-dependent future scenarios would lead to a significant decline of potential PBB by 2100, especially biocontrol agents (-1.03%) and stress resistance bacteria (-0.61%), which may potentially threaten global food production and (agro)ecosystem services.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Microbiología del Suelo , Bacterias/genética , Plantas
10.
J Fungi (Basel) ; 9(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37755034

RESUMEN

This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.

12.
Nat Commun ; 14(1): 3311, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291086

RESUMEN

Factors driving microbial community composition and diversity are well established but the relationship with microbial functioning is poorly understood, especially at large scales. We analysed microbial biodiversity metrics and distribution of potential functional groups along a gradient of increasing land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal OTUs in 715 sites across 24 European countries. We found the lowest bacterial and fungal diversity in less-disturbed environments (woodlands) compared to grasslands and highly-disturbed environments (croplands). Highly-disturbed environments contain significantly more bacterial chemoheterotrophs, harbour a higher proportion of fungal plant pathogens and saprotrophs, and have less beneficial fungal plant symbionts compared to woodlands and extensively-managed grasslands. Spatial patterns of microbial communities and predicted functions are best explained when interactions among the major determinants (vegetation cover, climate, soil properties) are considered. We propose guidelines for environmental policy actions and argue that taxonomical and functional diversity should be considered simultaneously for monitoring purposes.


Asunto(s)
Microbiología del Suelo , Suelo , Hongos/genética , Europa (Continente) , Bacterias/genética , Biodiversidad
13.
Nat Clim Chang ; 13(5): 478-483, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37193246

RESUMEN

Increasing the number of environmental stressors could decrease ecosystem functioning in soils. Yet this relationship has never been globally assessed outside laboratory experiments. Here, using two independent global standardized field surveys, and a range of natural and human factors, we test the relationship between the number of environmental stressors exceeding different critical thresholds and the maintenance of multiple ecosystem services across biomes. Our analysis shows that, multiple stressors, from medium levels (>50%), negatively and significantly correlates with impacts on ecosystem services, and that multiple stressors crossing a high-level critical threshold (over 75% of maximum observed levels), reduces soil biodiversity and functioning globally. The number of environmental stressors >75% threshold was consistently seen as an important predictor of multiple ecosystem services, therefore improving prediction of ecosystem functioning. Our findings highlight the need to reduce the dimensionality of the human footprint on ecosystems to conserve biodiversity and function.

14.
Front Plant Sci ; 14: 1106617, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143888

RESUMEN

Introduction: Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. Methods: We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. Results: Large-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. Discussion: eDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.

15.
MycoKeys ; 96: 143-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214179

RESUMEN

Fungal metabarcoding of substrates such as soil, wood, and water is uncovering an unprecedented number of fungal species that do not seem to produce tangible morphological structures and that defy our best attempts at cultivation, thus falling outside the scope of the International Code of Nomenclature for algae, fungi, and plants. The present study uses the new, ninth release of the species hypotheses of the UNITE database to show that species discovery through environmental sequencing vastly outpaces traditional, Sanger sequencing-based efforts in a strongly increasing trend over the last five years. Our findings challenge the present stance of some in the mycological community - that the current situation is satisfactory and that no change is needed to "the code" - and suggest that we should be discussing not whether to allow DNA-based descriptions (typifications) of species and by extension higher ranks of fungi, but what the precise requirements for such DNA-based typifications should be. We submit a tentative list of such criteria for further discussion. The present authors hope for a revitalized and deepened discussion on DNA-based typification, because to us it seems harmful and counter-productive to intentionally deny the overwhelming majority of extant fungi a formal standing under the International Code of Nomenclature for algae, fungi, and plants.

16.
New Phytol ; 238(6): 2607-2620, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36949609

RESUMEN

Nitrogen (N) deposition and soil acidification are environmental challenges affecting ecosystem functioning, health, and biodiversity, but their effects on functional genes are poorly understood. Here, we utilized metabarcoding and metagenomics to investigate the responses of soil functional genes to N deposition along a natural soil pH gradient. Soil N content was uncorrelated with pH, enabling us to investigate their effects separately. Soil acidity strongly and negatively affected the relative abundances of most cluster of orthologous gene categories of the metabolism supercategory. Similarly, soil acidity negatively affected the diversity of functional genes related to carbon and N but not phosphorus cycling. Multivariate analyses showed that soil pH was the most important factor affecting microbial and functional gene composition, while the effects of N deposition were less important. Relative abundance of KEGG functional modules related to different parts of the studied cycles showed variable responses to soil acidity and N deposition. Furthermore, our results suggested that the diversity-function relationship reported for other organisms also applies to soil microbiomes. Since N deposition and soil pH affected microbial taxonomic and functional composition to a different extent, we conclude that N deposition effects might be primarily mediated through soil acidification in forest ecosystems.


Asunto(s)
Ecosistema , Microbiota , Suelo/química , Nitrógeno/metabolismo , Carbono/metabolismo , Bosques , Microbiología del Suelo
17.
Front Plant Sci ; 14: 1100235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743494

RESUMEN

Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nifH gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria.

18.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631668

RESUMEN

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Asunto(s)
Ecosistema , Suelo , Humanos , Parques Recreativos , Biodiversidad , Plantas
19.
Sci China Life Sci ; 66(5): 1134-1150, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462107

RESUMEN

Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.


Asunto(s)
Ecosistema , Hongos , Humanos , Hongos/genética , Biodiversidad , Bosques , Plantas/microbiología , Suelo , Microbiología del Suelo
20.
Plant Dis ; 107(2): 344-349, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35822887

RESUMEN

Herbaria are a promising but still poorly applied information source for retrospective microbiological studies. In order to find any evidence of the virulent European origin of ash dieback agent Hymenoscyphus fraxineus and other fungal pathogens, we analyzed 109 leaf samples from three different Estonian botanical herbaria, sampled during 171 years from 20 ash species and cultivars, using a PacBio third-generation sequencing of the fungal internal transcribed spacer ITS1-5.8S-ITS2 ribosomal DNA region. We identified a large amount of saprotrophic fungi naturally colonizing ash leaves. Hymenoscyphus fraxineus colonized a Fraxinus chinensis subsp. rhynchophylla specimen and a F. chinensis specimen collected from Tallinn Botanic Garden in July 1978 and July 1992, respectively. The samples originated from trees grown in this garden from seeds collected from Shamora, Far-East Russia, in 1961 and from a Beijing botanical garden in eastern China in 1985, respectively. Repeated subsequent DNA extraction, real-time quantitative PCR, and Sanger and Illumina sequencing confirmed our findings of these apparently oldest cases of the ash dieback agent in Europe. These results show that H. fraxineus evidently was present in Estonia 19 years earlier than our previous data from fungal herbaria documented and 14 years before the first visible damage of ash trees was registered in Poland. Because we found no evidence of the saprotrophic H. albidus from earlier mycological and botanical herbarium specimens, the presence of H. albidus in Estonia remains questionable.


Asunto(s)
Ascomicetos , Fraxinus , Estudios Retrospectivos , Enfermedades de las Plantas/microbiología , Europa (Continente) , Ascomicetos/genética , Fraxinus/genética , Fraxinus/microbiología , ADN Intergénico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA