Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Elife ; 122024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546716

RESUMEN

Present-day publications on human genes primarily feature genes that already appeared in many publications prior to completion of the Human Genome Project in 2003. These patterns persist despite the subsequent adoption of high-throughput technologies, which routinely identify novel genes associated with biological processes and disease. Although several hypotheses for bias in the selection of genes as research targets have been proposed, their explanatory powers have not yet been compared. Our analysis suggests that understudied genes are systematically abandoned in favor of better-studied genes between the completion of -omics experiments and the reporting of results. Understudied genes remain abandoned by studies that cite these -omics experiments. Conversely, we find that publications on understudied genes may even accrue a greater number of citations. Among 45 biological and experimental factors previously proposed to affect which genes are being studied, we find that 33 are significantly associated with the choice of hit genes presented in titles and abstracts of -omics studies. To promote the investigation of understudied genes, we condense our insights into a tool, find my understudied genes (FMUG), that allows scientists to engage with potential bias during the selection of hits. We demonstrate the utility of FMUG through the identification of genes that remain understudied in vertebrate aging. FMUG is developed in Flutter and is available for download at fmug.amaral.northwestern.edu as a MacOS/Windows app.


Modern techniques for studying human genetics have helped to identify 20,000 protein-encoding genes in the human genome. Yet scientists have not studied most of them, including genes linked to human diseases in genome wide studies. For example, about 44% of the genes associated with Alzheimer's disease have never been mentioned in the title or summary of a scientific article. Why so many health-linked genes have yet to be examined is unclear. Many genetic studies instead focus on genes already studied before the Human Genome Project mapped the entire genome in 2003. There are many reasons why scientists may ignore potentially disease-causing genes. They may feel that well-studied genes are safer bets or more likely to result in high-profile publications. Or they may lack the tools to study less well-characterized genes. Richardson et al. analyzed the scientific literature for clues on why so many genes are being ignored by scientists. The analysis included hundreds of articles that used a wide range of genetic techniques, including genome-wide association studies, RNA sequencing, and gene editing tools to scour the genome for disease-linked genes. It revealed that scientists abandon the study of many genes early in the research process and identify 33 reasons why. Contrary to scientists' fears, Richardson et al. show that reports on understudied genes often garner more attention than studies on well-known genes. Richardson et al. used their results to create a downloadable tool called "Find My Understudied Genes (FMUG)" to help scientists identify understudied genes and counteract bias toward more well-studied genes. The app may help scientists make informed decisions about which understudied genes to research. If the tool helps boost investigation of understudied genes, it may help speed up progress towards understanding human genetics and how various genes may contribute to diseases.


Asunto(s)
Envejecimiento , Médicos , Humanos , Bioensayo
2.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36909550

RESUMEN

Present-day publications on human genes primarily feature genes that already appeared in many publications prior to completion of the Human Genome Project in 2003. These patterns persist despite the subsequent adoption of high-throughput technologies, which routinely identify novel genes associated with biological processes and disease. Although several hypotheses for bias in the selection of genes as research targets have been proposed, their explanatory powers have not yet been compared. Our analysis suggests that understudied genes are systematically abandoned in favor of better-studied genes between the completion of -omics experiments and the reporting of results. Understudied genes remain abandoned by studies that cite these -omics experiments. Conversely, we find that publications on understudied genes may even accrue a greater number of citations. Among 45 biological and experimental factors previously proposed to affect which genes are being studied, we find that 33 are significantly associated with the choice of hit genes presented in titles and abstracts of - omics studies. To promote the investigation of understudied genes we condense our insights into a tool, find my understudied genes (FMUG), that allows scientists to engage with potential bias during the selection of hits. We demonstrate the utility of FMUG through the identification of genes that remain understudied in vertebrate aging. FMUG is developed in Flutter and is available for download at fmug.amaral.northwestern.edu as a MacOS/Windows app.

3.
Nat Aging ; 2(12): 1191-1206, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-37118543

RESUMEN

Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.


Asunto(s)
Envejecimiento , Transcriptoma , Humanos , Animales , Ratones , Transcriptoma/genética , Envejecimiento/genética , Longevidad/genética , Perfilación de la Expresión Génica , Factores de Riesgo
4.
PLoS One ; 15(4): e0229662, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32236126

RESUMEN

Female representation has been slowly but steadily increasing in many sectors of society. One sector where one would expect to see gender parity is the movie industry, yet the representation of females in most functions within the U.S. movie industry remain surprisingly low. Here, we study the historical patterns of female representation among actors, directors, and producers in an attempt to gain insights into the possible causes of the lack of gender parity in the industry. Our analyses reveals a remarkable temporal coincidence between the collapse in female representation across all functions and the advent of the Studio System, a period when the major Hollywood studios controlled all aspects of the industry. Female representation among actors, directors, producers and writers dropped to extraordinarily low values during the emergence and consolidation of the Studio System that in some cases have not yet recovered to pre-Studio System levels. In order to explore some possible mechanisms behind these patterns, we investigate the association between the gender balance of actors, writers, directors, and producers and a number of economic indicators, movie industry indicators, and movie characteristics. We find robust, strong, and significant associations which are consistent with an important role for the gender of decision makers on the gender balance of other industry functions. While in no way demonstrating causality, our findings add new perspectives to the discussions of the reasons for female under-representation in fields such as computer science and medicine, that have also experienced dramatic changes in female representation.


Asunto(s)
Identidad de Género , Industrias/estadística & datos numéricos , Películas Cinematográficas/estadística & datos numéricos , Toma de Decisiones , Femenino , Humanos , Masculino , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA