Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8015): 96-101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750361

RESUMEN

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

2.
J Am Chem Soc ; 146(18): 12808-12818, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38668701

RESUMEN

The surface chemistry of colloidal semiconductor nanocrystals (QDs) profoundly influences their physical and chemical attributes. The insulating organic shell ensuring colloidal stability impedes charge transfer, thus limiting optoelectronic applications. Exchanging these ligands with shorter inorganic ones enhances charge mobility and stability, which is pivotal for using these materials as active layers for LEDs, photodetectors, and transistors. Among those, InP QDs also serve as a model for surface chemistry investigations. This study focuses on group III metal salts as inorganic ligands for InP QDs. We explored the ligand exchange mechanism when metal halide, nitrate, and perchlorate salts of group III (Al, In Ga), common Lewis acids, are used as ligands for the conductive inks. Moreover, we compared the exchange mechanism for two starting model systems: InP QDs capped with myristate and oleylamine as X- and L-type native organic ligands, respectively. We found that all metal halide, nitrate, and perchlorate salts dissolved in polar solvents (such as n-methylformamide, dimethylformamide, dimethyl sulfoxide, H2O) with various polarity formed metal-solvent complex cations [M(Solvent)6]3+ (e.g., [Al(MFA)6]3+, [Ga(MFA)6]3+, [In(MFA)6]3+), which passivated the surface of InP QDs after the removal of the initial organic ligand. All metal halide capped InP/[M(Solvent)6]3+ QDs show excellent colloidal stability in polar solvents with high dielectric constant even after 6 months in concentrations up to 74 mg/mL. Our findings demonstrate the dominance of dissociation-complexation mechanisms in polar solvents, ensuring colloidal stability. This comprehensive understanding of InP QD surface chemistry paves the way for exploring more complex QD systems such as InAs and InSb QDs.

3.
ACS Energy Lett ; 9(3): 992-999, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482183

RESUMEN

Slow hot-carrier cooling may potentially allow overcoming the maximum achievable power conversion efficiency of single-junction solar cells. For formamidinium tin triiodide, an exceptional slow cooling time of a few nanoseconds was reported. However, a systematic study of the cation influence, as is present for lead compounds, is lacking. Here, we report the first comparative study on formamidinium, methylammonium, and cesium tin triiodide thin films. By investigating their photoluminescence, we observe a considerable shift of the emission peak to high energy with the increase of the excited-state population, which is more prominent in the case of the two hybrid organic-inorganic perovskites (∼45 meV vs ∼15 meV at 9 × 1017 cm-3 carrier density). The hot-carrier photoluminescence of the three tin compositions decays with a 0.6-2.8 ns time constant with slower cooling observed for the two hybrids, further indicating their importance.

4.
Adv Mater ; : e2301404, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36999655

RESUMEN

Transport layers are of outmost importance for thin-film solar cells, determining not only their efficiency but also their stability. To bring one of these thin-film technologies toward mass production, many factors besides efficiency and stability become important, including the ease of deposition in a scalable manner and the cost of the different material's layers. Herein, highly efficient organic solar cells (OSCs), in the inverted structure (n-i-p), are demonstrated by using as electron transport layer (ETL) tin oxide (SnO2 ) deposited by atomic layer deposition (ALD). ALD is an industrial grade technique which can be applied at the wafer level and also in a roll-to-roll configuration. A champion power conversion efficiency (PCE) of 17.26% and a record fill factor (FF) of 79% are shown by PM6:L8-BO OSCs when using ALD-SnO2 as ETL. These devices outperform solar cells with SnO2 nanoparticles casted from solution (PCE 16.03%, FF 74%) and also those utilizing the more common sol-gel ZnO (PCE 16.84%, FF 77%). The outstanding results are attributed to a reduced charge carrier recombination at the interface between the ALD-SnO2 film and the active layer. Furthermore, a higher stability under illumination is demonstrated for the devices with ALD-SnO2 in comparison with those utilizing ZnO.

5.
ACS Energy Lett ; 7(12): 4232-4241, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36531144

RESUMEN

2D metal halide perovskites can show narrow and broad emission bands (BEs), and the latter's origin is hotly debated. A widespread opinion assigns BEs to the recombination of intrinsic self-trapped excitons (STEs), whereas recent studies indicate they can have an extrinsic defect-related origin. Here, we carry out a combined experimental-computational study into the microscopic origin of BEs for a series of prototypical phenylethylammonium-based 2D perovskites, comprising different metals (Pb, Sn) and halides (I, Br, Cl). Photoluminescence spectroscopy reveals that all of the compounds exhibit BEs. Where not observable at room temperature, the BE signature emerges upon cooling. By means of DFT calculations, we demonstrate that emission from halide vacancies is compatible with the experimentally observed features. Emission from STEs may only contribute to the BE in the wide-band-gap Br- and Cl-based compounds. Our work paves the way toward a complete understanding of broad emission bands in halide perovskites that will facilitate the fabrication of efficient narrow and white light emitting devices.

7.
J Phys Chem Lett ; 12(42): 10444-10449, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34672592

RESUMEN

Cs2AgBiBr6 is a potential lead-free double perovskite candidate for optoelectronic applications; however, its large and indirect band gap imposes limitations. Here, single crystals of Cs2AgBiBr6 are doped with Cu2+ cations to increase the absorption range from the visible region up to 0.5 eV in the near-infrared region. Inductively coupled plasma spectroscopy confirms the presence of 1.9% of copper in the Cs2AgBiBr6 structure. Structural and optical changes caused by Cu doping were studied by Raman spectroscopy combined with X-ray diffraction, heat capacity measurements, and low-temperature photoluminescence spectroscopy. Along with the 1.9 eV emission typical of the pristine Cs2AgBiBr6 single crystals, we report a novel low-energy emission at 0.9 eV related to deep defects. In the doped crystals, these peaks are quenched, and a new emission band at 1.3 eV is visible. This new emission band appears only above 120 K, showing that thermal energy is necessary to trigger the copper-related emission.

8.
Nat Commun ; 11(1): 2344, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393785

RESUMEN

Two-dimensional metal halide perovskites of Ruddlesden-Popper type have recently moved into the centre of attention of perovskite research due to their potential for light generation and for stabilisation of their 3D counterparts. It has become widespread in the field to attribute broad luminescence with a large Stokes shift to self-trapped excitons, forming due to strong carrier-phonon interactions in these compounds. Contrarily, by investigating the behaviour of two types of lead-iodide based single crystals, we here highlight the extrinsic origin of their broad band emission. As shown by below-gap excitation, in-gap states in the crystal bulk are responsible for the broad emission. With this insight, we further the understanding of the emission properties of low-dimensional perovskites and question the generality of the attribution of broad band emission in metal halide perovskite and related compounds to self-trapped excitons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA