Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 9(33): eadi5548, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585529

RESUMEN

Loss-of-function variants in NIMA-related kinase 1 (NEK1) constitute a major genetic cause of amyotrophic lateral sclerosis (ALS), accounting for 2 to 3% of all cases. However, how NEK1 mutations cause motor neuron (MN) dysfunction is unknown. Using mass spectrometry analyses for NEK1 interactors and NEK1-dependent expression changes, we find functional enrichment for proteins involved in the microtubule cytoskeleton and nucleocytoplasmic transport. We show that α-tubulin and importin-ß1, two key proteins involved in these processes, are phosphorylated by NEK1 in vitro. NEK1 is essential for motor control and survival in Drosophila models in vivo, while using several induced pluripotent stem cell (iPSC)-MN models, including NEK1 knockdown, kinase inhibition, and a patient mutation, we find evidence for disruptions in microtubule homeostasis and nuclear import. Notably, stabilizing microtubules with two distinct classes of drugs restored NEK1-dependent deficits in both pathways. The capacity of NEK1 to modulate these processes that are critically involved in ALS pathophysiology renders this kinase a formidable therapeutic candidate.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Transporte Activo de Núcleo Celular , Quinasa 1 Relacionada con NIMA/genética , Proteínas , Neuronas Motoras , Microtúbulos , Homeostasis
2.
Med ; 4(1): 31-50.e8, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36417917

RESUMEN

BACKGROUND: Adeno-associated virus (AAV) vectors are a promising vehicle for noninvasive gene delivery to the central nervous system via intravenous infusion. However, naturally occurring serotypes have a limited ability to transduce the brain, and translating engineered capsids from mice to nonhuman primates has proved challenging. METHODS: In this study, we use an mRNA-based directed-evolution strategy in multiple strains of mice as well as a de novo selection in cynomolgus macaques to identify families of engineered vectors with increased potency in the brain and decreased tropism for the liver. FINDINGS: We compare the transgene expression capabilities of several engineered vectors and show that while some of our novel macaque-derived variants significantly outperform AAV9 in transducing the macaque brain following systemic administration, mouse-derived variants-both those identified in this study and those reported by other groups-universally do not. CONCLUSIONS: Together, the results of this work introduce a class of primate-derived engineered AAV capsids with increased therapeutic potential and highlight the critical need for using appropriate animal models to both identify and evaluate novel AAVs intended for delivery to the human central nervous system. FUNDING: This work was funded primarily through an anonymous philanthropic gift to the P.C.S. lab at the Broad Institute of MIT and Harvard and by a grant from the Howard Hughes Medical Institute to P.C.S.


Asunto(s)
Cápside , Macaca , Humanos , Animales , Ratones , Cápside/metabolismo , Macaca/genética , Vectores Genéticos/genética , Sistema Nervioso Central/metabolismo , Transgenes , Primates/genética , Dependovirus/genética , Dependovirus/metabolismo
3.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34506722

RESUMEN

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Asunto(s)
Cápside/metabolismo , Dependovirus/metabolismo , Evolución Molecular Dirigida , Técnicas de Transferencia de Gen , Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Cápside/química , Células Cultivadas , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/terapia , Multimerización de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/uso terapéutico , ARN Guía de Kinetoplastida/metabolismo , Recombinación Genética/genética , Especificidad de la Especie , Transgenes
4.
Neuron ; 106(1): 90-107.e13, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32059759

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide repeat expansion in C9orf72 (C9-HRE). While RNA and dipeptide repeats produced by C9-HRE disrupt nucleocytoplasmic transport, the proteins that become redistributed remain unknown. Here, we utilized subcellular fractionation coupled with tandem mass spectrometry and identified 126 proteins, enriched for protein translation and RNA metabolism pathways, which collectively drive a shift toward a more cytosolic proteome in C9-HRE cells. Among these was eRF1, which regulates translation termination and nonsense-mediated decay (NMD). eRF1 accumulates within elaborate nuclear envelope invaginations in patient induced pluripotent stem cell (iPSC) neurons and postmortem tissue and mediates a protective shift from protein translation to NMD-dependent mRNA degradation. Overexpression of eRF1 and the NMD driver UPF1 ameliorate C9-HRE toxicity in vivo. Our findings provide a resource for proteome-wide nucleocytoplasmic alterations across neurodegeneration-associated repeat expansion mutations and highlight eRF1 and NMD as therapeutic targets in C9orf72-associated ALS and/or FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Drosophila/genética , Demencia Frontotemporal/genética , Neuronas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Factores de Terminación de Péptidos/genética , ARN Mensajero/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/metabolismo , Fraccionamiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Membrana Nuclear , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteoma , Fracciones Subcelulares , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA