Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
PLoS Biol ; 22(6): e3002661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829909

RESUMEN

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.


Asunto(s)
Cromosomas , Evolución Molecular , Genoma , Filogenia , Animales , Cromosomas/genética , Genoma/genética , Sintenía , Ligamiento Genético , Cordados/genética
2.
Genome Biol ; 25(1): 123, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760655

RESUMEN

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Asunto(s)
Cromatina , Retina , Enfermedades de la Retina , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Cromatina/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Retina/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Regiones Promotoras Genéticas , Sitios Genéticos , Pez Cebra/genética , Secuencias Reguladoras de Ácidos Nucleicos , Genoma Humano
3.
Nat Commun ; 15(1): 4550, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811547

RESUMEN

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cabeza , Anfioxos , Mesodermo , Vertebrados , Animales , Mesodermo/citología , Mesodermo/embriología , Anfioxos/embriología , Anfioxos/genética , Cabeza/embriología , Vertebrados/embriología , Vertebrados/genética , Somitos/embriología , Somitos/citología , Somitos/metabolismo , Evolución Biológica , Transcriptoma
4.
Commun Biol ; 7(1): 253, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429383

RESUMEN

Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.


Asunto(s)
Peces Planos , Animales , Peces Planos/genética , Metamorfosis Biológica/genética , Ojo , Hormonas Tiroideas/genética , Perfilación de la Expresión Génica
5.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427484

RESUMEN

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Receptores de Superficie Celular , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Microglía/metabolismo , Fagocitosis , Receptores de Superficie Celular/metabolismo
6.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321954

RESUMEN

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Tretinoina , Animales , Cromatina/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/genética , Desarrollo Embrionario/efectos de los fármacos , Epigenoma , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología , Tretinoina/metabolismo , Pez Cebra/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Immunol Cell Biol ; 102(2): 131-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184783

RESUMEN

The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Ratones , Animales , Osteogénesis/genética , Huesos , Médula Ósea , Hematopoyesis
8.
Elife ; 122023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37449480

RESUMEN

Cilia, either motile or non-motile (a.k.a primary or sensory), are complex evolutionarily conserved eukaryotic structures composed of hundreds of proteins required for their assembly, structure and function that are collectively known as the ciliome. Ciliome gene mutations underlie a group of pleiotropic genetic diseases known as ciliopathies. Proper cilium function requires the tight coregulation of ciliome gene transcription, which is only fragmentarily understood. RFX transcription factors (TF) have an evolutionarily conserved role in the direct activation of ciliome genes both in motile and non-motile cilia cell-types. In vertebrates, FoxJ1 and FoxN4 Forkhead (FKH) TFs work with RFX in the direct activation of ciliome genes, exclusively in motile cilia cell-types. No additional TFs have been described to act together with RFX in primary cilia cell-types in any organism. Here we describe FKH-8, a FKH TF, as a direct regulator of the sensory ciliome genes in Caenorhabditis elegans. FKH-8 is expressed in all ciliated neurons in C. elegans, binds the regulatory regions of ciliome genes, regulates ciliome gene expression, cilium morphology and a wide range of behaviors mediated by sensory ciliated neurons. FKH-8 and DAF-19 (C. elegans RFX) physically interact and synergistically regulate ciliome gene expression. C. elegans FKH-8 function can be replaced by mouse FOXJ1 and FOXN4 but not by other members of other mouse FKH subfamilies. In conclusion, RFX and FKH TF families act jointly as direct regulators of ciliome genes also in sensory ciliated cell types suggesting that this regulatory logic could be an ancient trait predating functional cilia sub-specialization.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Factores de Transcripción Forkhead , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Receptoras Sensoriales/fisiología
9.
Nature ; 616(7957): 495-503, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046085

RESUMEN

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Asunto(s)
Aletas de Animales , Evolución Biológica , Genoma , Genómica , Rajidae , Animales , Aletas de Animales/anatomía & histología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Rajidae/anatomía & histología , Rajidae/genética , Pez Cebra/genética , Genes Reporteros/genética
10.
Sci Data ; 10(1): 196, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031231

RESUMEN

Metamorphosis is a widely studied post-embryonic process in which many tissues undergo dramatic modifications to adapt to the new adult lifestyle. Flatfishes represent a good example of metamorphosis in teleost fishes. During metamorphosis of flatfish, organ regression and neoformation occur, with one of the most notable changes being the migration of one of the eyes to the other side of the body. In order to create a useful and reliable tool to advance the molecular study of metamorphosis in flatfish, we generated a chromatin accessible atlas as well as gene expression profile during four developmental stages ranging from a phylotypic to a post-metamorphic stage. We identified 29,019 differentially accessible chromatin regions and 3,253 differentially expressed genes. We found stage-specific regulatory regions and gene expression profiles, supporting the quality of the results. Our work provides strongly reproducible data for further studies to elucidate the regulatory elements that ensure successful metamorphosis in flatfish species.


Asunto(s)
Cromatina , Peces Planos , Animales , Cromatina/genética , Cromatina/metabolismo , Peces Planos/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica/genética , Transcriptoma
11.
J Vis Exp ; (188)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36342182

RESUMEN

Eukaryotic DNA replication is a highly regulated process that ensures that the genetic blueprint of a cell is correctly duplicated prior to chromosome segregation. As DNA synthesis defects underlie chromosome rearrangements, monitoring DNA replication has become essential to understand the basis of genome instability. Saccharomyces cerevisiae is a classical model to study cell cycle regulation, but key DNA replication parameters, such as the fraction of cells in the S phase or the S-phase duration, are still difficult to determine. This protocol uses short and non-toxic pulses of 5-ethynyl-2'-deoxyuridine (EdU), a thymidine analog, in engineered TK-hENT1 yeast cells, followed by its detection by Click reaction to allow the visualization and quantification of DNA replication with high spatial and temporal resolution at both the single-cell and population levels by microscopy and flow cytometry. This method may identify previously overlooked defects in the S phase and cell cycle progression of yeast mutants, thereby allowing the characterization of new players essential for ensuring genome stability.


Asunto(s)
Desoxiuridina , Saccharomyces cerevisiae , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Replicación del ADN
12.
Genome Biol ; 23(1): 243, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401278

RESUMEN

BACKGROUND: Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS: We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS: In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.


Asunto(s)
Anfioxos , Animales , Anfioxos/genética , Duplicación de Gen , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Evolución Molecular
13.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36243009

RESUMEN

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Asunto(s)
Distrofias Hereditarias de la Córnea , Tomografía de Coherencia Óptica , Adulto , Animales , Humanos , Linaje , Retina/metabolismo , Xenopus laevis/genética
14.
J Clin Med ; 11(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683427

RESUMEN

BACKGROUND: The aim was to evaluate the reinforcement of the standard therapy with hyperimmune plasma (HP) in Coronavirus-19 disease (COVID-19) patients. METHODS: Open-label, multicenter, randomized clinical trial performed in three hospitals in the Balearic Islands. Non-severe COVID-19 hospitalized patients with clinical time evolution equal to/less than 7 days were included, and randomized in: plasma group (PG) (n = 37), receiving 600 mL divided into two doses from convalescent plasma donor, administered on days 1 and 2 after the enrollment; and control group (CG) (n = 17). Primary outcome was the time for clinical improvement within 21 days, defined as patient achievement of categories 8, 7, and 6 in the Adaptive COVID-19 Treatment Trial scale (ACTT). The trial was terminated early due to the impossibility of recruitment due to the pandemic. RESULTS: PG presented better scores on the ACTT scale at 7 days after HP infusion, whereas CG was needed 14 days to achieve similar results. The plasma infusion was safe. CONCLUSIONS: Despite the tendency observed in the plasma group to achieve slightly earlier better physical condition compared with the standard treatment alone. The administration of HP has been shown to be a safe therapy. No robust evidence was found to affirm a therapeutic effect of the early administration of two infusions of HP for non-severe COVID-19 infected patients. The interpretation is limited by the early termination of the trial, which resulted in a small sample size.

15.
Nat Commun ; 13(1): 1945, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410466

RESUMEN

The pancreas is a central organ for human diseases. Most alleles uncovered by genome-wide association studies of pancreatic dysfunction traits overlap with non-coding sequences of DNA. Many contain epigenetic marks of cis-regulatory elements active in pancreatic cells, suggesting that alterations in these sequences contribute to pancreatic diseases. Animal models greatly help to understand the role of non-coding alterations in disease. However, interspecies identification of equivalent cis-regulatory elements faces fundamental challenges, including lack of sequence conservation. Here we combine epigenetic assays with reporter assays in zebrafish and human pancreatic cells to identify interspecies functionally equivalent cis-regulatory elements, regardless of sequence conservation. Among other potential disease-relevant enhancers, we identify a zebrafish ptf1a distal-enhancer whose deletion causes pancreatic agenesis, a phenotype previously found to be induced by mutations in a distal-enhancer of PTF1A in humans, further supporting the causality of this condition in vivo. This approach helps to uncover interspecies functionally equivalent cis-regulatory elements and their potential role in human disease.


Asunto(s)
Elementos de Facilitación Genéticos , Pez Cebra , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Estudio de Asociación del Genoma Completo , Páncreas , Pez Cebra/genética
16.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263228

RESUMEN

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Anfioxos , Pez Cebra , Animales , Evolución Biológica , Gastrulación/genética , Anfioxos/embriología , Anfioxos/genética , Pez Cebra/embriología , Pez Cebra/genética
17.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35276009

RESUMEN

Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.


Asunto(s)
Redes Reguladoras de Genes , Anfioxos , Animales , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Am J Hum Genet ; 109(4): 553-570, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202564

RESUMEN

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.


Asunto(s)
Acromegalia , Enfermedades Genéticas Ligadas al Cromosoma X , Gigantismo , Neoplasias Hipofisarias , Acromegalia/complicaciones , Acromegalia/genética , Acromegalia/patología , Preescolar , Cromatina/genética , Comunicación , Proteínas de Unión al ADN/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Gigantismo/complicaciones , Gigantismo/genética , Gigantismo/patología , Humanos , Neoplasias Hipofisarias/genética , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción/genética
19.
Cell Death Differ ; 29(4): 832-845, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34824391

RESUMEN

Exposure to genotoxic stress promotes cell cycle arrest and DNA repair or apoptosis. These "life" or "death" cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, the precise regulation of p53 is essential to maintain tissue homeostasis and to prevent cancer development. However, how cell cycle progression has an impact on p53 cell fate decision-making is mostly unknown. In this work, we demonstrate that Drosophila p53 proapoptotic activity can be impacted by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation-induced apoptosis. We show that p53 binding to the regulatory elements of the proapoptotic genes and its ability to activate their expression is compromised in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 proapoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 proapoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.


Asunto(s)
Drosophila , Proteína p53 Supresora de Tumor , Animales , Apoptosis/genética , Ciclo Celular/genética , Proliferación Celular/genética , Daño del ADN , Drosophila/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
20.
Biology (Basel) ; 10(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34943172

RESUMEN

Metamorphosis is a captivating process of change during which the morphology of the larva is completely reshaped to face the new challenges of adult life. In the case of fish, this process initiated in the brain has traditionally been considered to be a critical rearing point and despite the pioneering molecular work carried out in other flatfishes, the underlying molecular basis is still relatively poorly characterized. Turbot brain transcriptome of three developmental stages (pre-metamorphic, climax of metamorphosis and post-metamorphic) were analyzed to study the gene expression dynamics throughout the metamorphic process. A total of 1570 genes were differentially expressed in the three developmental stages and we found a specific pattern of gene expression at each stage. Unexpectedly, at the climax stage of metamorphosis, we found highly expressed genes related to the immune response, while the biological pathway enrichment analysis in pre-metamorphic and post-metamorphic were related to cell differentiation and oxygen carrier activity, respectively. In addition, our results confirm the importance of thyroid stimulating hormone, increasing its expression during metamorphosis. Based on our findings, we assume that immune system activation during the climax of metamorphosis stage could be related to processes of larval tissue inflammation, resorption and replacement, as occurs in other vertebrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA