Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Eur J Hum Genet ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355961

RESUMEN

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

3.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37451268

RESUMEN

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Asunto(s)
Discapacidad Intelectual , Fosfatidilinositoles , Animales , Síndrome , Actinas , Pez Cebra/genética , Discapacidad Intelectual/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de Fosfatidilinositol
4.
J Med Genet ; 60(2): 163-173, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35256403

RESUMEN

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Asunto(s)
Malformaciones Vasculares , Humanos , Mutación/genética , Fenotipo , Genotipo , Fosfatidilinositol 3-Quinasa Clase I/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Proteína Activadora de GTPasa p120/genética
5.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
6.
Nat Commun ; 13(1): 6470, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309531

RESUMEN

Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements.


Asunto(s)
Cromatina , Genoma , Humanos , Genoma/genética , Secuencia de Bases , Mapeo Cromosómico , Células Germinativas
7.
Biomedicines ; 9(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34829952

RESUMEN

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) differ for triggers, mode of start, associated symptoms, evolution, and biochemical traits. Therefore, serious attempts are underway to partition them into subgroups useful for a personalized medicine approach to the disease. Here, we investigated clinical and biochemical traits in 40 ME/CFS patients and 40 sex- and age-matched healthy controls. Particularly, we analyzed serum levels of some cytokines, Fatty Acid Binding Protein 2 (FAPB-2), tryptophan, and some of its metabolites via serotonin and kynurenine. ME/CFS patients were heterogeneous for genetic background, trigger, start mode, symptoms, and evolution. ME/CFS patients had higher levels of IL-17A (p = 0.018), FABP-2 (p = 0.002), and 3-hydroxykynurenine (p = 0.037) and lower levels of kynurenine (p = 0.012) and serotonin (p = 0.045) than controls. Changes in kynurenine and 3-hydroxykynurenine were associated with increased kynurenic acid/kynurenine and 3-hydroxykynurenine/kynurenine ratios, indirect measures of kynurenine aminotransferases and kynurenine 3-monooxygenase enzymatic activities, respectively. No correlation was found among cytokines, FABP-2, and tryptophan metabolites, suggesting that inflammation, anomalies of the intestinal barrier, and changes of tryptophan metabolism may be independently associated with the pathogenesis of the disease. Interestingly, patients with the start of the disease after infection showed lower levels of kynurenine (p = 0.034) than those not starting after an infection. Changes in tryptophan metabolites and increased IL-17A levels in ME/CFS could both be compatible with anomalies in the sphere of energy metabolism. Overall, clinical traits together with serum biomarkers related to inflammation, intestine function, and tryptophan metabolism deserve to be further considered for the development of personalized medicine strategies for ME/CFS.

8.
Eur J Med Genet ; 64(12): 104361, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34653680

RESUMEN

The elongator complex is a highly conserved macromolecular assembly composed by 6 individual proteins (Elp 1-6) and it is essential for many cellular functions such as transcription elongation, histone acetylation and tRNA modification. ELP2 is the second major subunit and with Elp1 and Elp3 it shapes the catalytic core of this essential complex. ELP2 gene pathogenic variants have been reported to be associated with several neurodevelopmental disorders, such as intellectual disability, severe motor development delay with truncal hypotonia, spastic diplegia, choreoathetosis, short stature and neuropsychiatric problems. Here we report a case with heterozygous variants of the ELP2 gene associated with unpublished electro-clinical and neuroimaging features, such as abnormal eye movements, focal epilepsy, cortico-cerebellar atrophy and nodular cortical heterotopia on brain MRI. A possible phenotype-genotype correlation and the electro-clinical and neuroimaging phenotype expansion of ELP2 mutations are here discussed, together with considerations on involved cortico-cerebellar networks and a detailed review of the literature.


Asunto(s)
Atrofia/genética , Enfermedades Cerebelosas/genética , Epilepsia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación/genética , Niño , Femenino , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Fenotipo
9.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113008

RESUMEN

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Haploinsuficiencia , Discapacidad Intelectual , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Heterocigoto , Humanos , Discapacidad Intelectual/genética
10.
Genes (Basel) ; 12(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923683

RESUMEN

Molecular defects altering the expression of the imprinted genes of the 11p15.5 cluster are responsible for the etiology of two congenital disorders characterized by opposite growth disturbances, Silver-Russell syndrome (SRS), associated with growth restriction, and Beckwith-Wiedemann syndrome (BWS), associated with overgrowth. At the molecular level, SRS and BWS are characterized by defects of opposite sign, including loss (LoM) or gain (GoM) of methylation at the H19/IGF2:intergenic differentially methylated region (H19/IGF2:IG-DMR), maternal or paternal duplication (dup) of 11p15.5, maternal (mat) or paternal (pat) uniparental disomy (upd), and gain or loss of function mutations of CDKN1C. However, while upd(11)pat is found in 20% of BWS cases and in the majority of them it is segmental, upd(11)mat is extremely rare, being reported in only two SRS cases to date, and in both of them is extended to the whole chromosome. Here, we report on two novel cases of mosaic upd(11)mat with SRS phenotype. The upd is mosaic and isodisomic in both cases but covers the entire chromosome in one case and is restricted to 11p14.1-pter in the other case. The segmental upd(11)mat adds further to the list of molecular defects of opposite sign in SRS and BWS, making these two imprinting disorders even more specular than previously described.


Asunto(s)
Impresión Genómica , Herencia Materna , Síndrome de Silver-Russell/genética , Disomía Uniparental/genética , Adolescente , Cromosomas Humanos Par 11/genética , Humanos , Masculino , Mosaicismo , Linaje , Síndrome de Silver-Russell/diagnóstico , Adulto Joven
11.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530447

RESUMEN

Oculo-auriculo-vertebral-spectrum (OAVS; OMIM 164210) is a rare disorder originating from abnormal development of the first and second branchial arch. The clinical phenotype is extremely heterogeneous with ear anomalies, hemifacial microsomia, ocular defects, and vertebral malformations being the main features. MYT1, AMIGO2, and ZYG11B gene variants were reported in a few OAVS patients, but the etiology remains largely unknown. A multifactorial origin has been proposed, including the involvement of environmental and epigenetic mechanisms. To identify the epigenetic mechanisms contributing to OAVS, we evaluated the DNA-methylation profiles of 41 OAVS unrelated affected individuals by using a genome-wide microarray-based methylation approach. The analysis was first carried out comparing OAVS patients with controls at the group level. It revealed a moderate epigenetic variation in a large number of genes implicated in basic chromatin dynamics such as DNA packaging and protein-DNA organization. The alternative analysis in individual profiles based on the searching for Stochastic Epigenetic Variants (SEV) identified an increased number of SEVs in OAVS patients compared to controls. Although no recurrent deregulated enriched regions were found, isolated patients harboring suggestive epigenetic deregulations were identified. The recognition of a different DNA methylation pattern in the OAVS cohort and the identification of isolated patients with suggestive epigenetic variations provide consistent evidence for the contribution of epigenetic mechanisms to the etiology of this complex and heterogeneous disorder.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Síndrome de Goldenhar/diagnóstico , Síndrome de Goldenhar/genética , Biología Computacional/métodos , Islas de CpG , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Anotación de Secuencia Molecular , Fenotipo
12.
Cell Death Discov ; 7(1): 34, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597506

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a rare developmental disorder affecting a multitude of organs including the central nervous system, inducing a variable neurodevelopmental delay. CdLS malformations derive from the deregulation of developmental pathways, inclusive of the canonical WNT pathway. We have evaluated MRI anomalies and behavioral and neurological clinical manifestations in CdLS patients. Importantly, we observed in our cohort a significant association between behavioral disturbance and structural abnormalities in brain structures of hindbrain embryonic origin. Considering the cumulative evidence on the cohesin-WNT-hindbrain shaping cascade, we have explored possible ameliorative effects of chemical activation of the canonical WNT pathway with lithium chloride in different models: (I) Drosophila melanogaster CdLS model showing a significant rescue of mushroom bodies morphology in the adult flies; (II) mouse neural stem cells restoring physiological levels in proliferation rate and differentiation capabilities toward the neuronal lineage; (III) lymphoblastoid cell lines from CdLS patients and healthy donors restoring cellular proliferation rate and inducing the expression of CyclinD1. This work supports a role for WNT-pathway regulation of CdLS brain and behavioral abnormalities and a consistent phenotype rescue by lithium in experimental models.

13.
Am J Med Genet A ; 185(1): 219-222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058492

RESUMEN

Congenital glycosylation disorders (CDG) are inherited metabolic diseases due to defective glycoprotein and glycolipid glycan assembly and attachment. MOGS-CDG is a rare disorder with seven patients from five families reported worldwide. We report on a 19-year-old girl with MOGS-CDG. At birth she presented facial dysmorphism, marked hypotonia, and drug-resistant tonic seizures. In the following months, her motility was strongly limited by dystonia, with forced posture of the head and of both hands. She showed a peculiar hyperkinetic movement disorder with a rhythmic and repetitive pattern repeatedly documented on EEG-polygraphy recordings. Brain MRI showed progressive cortical and subcortical atrophy. Epileptic spasms appeared in first months and ceased by the age of 7 years, while tonic seizures were still present at last assessment (19 years). We report the oldest-known MOGS-CDG patient and broaden the neurological phenotype of this CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Epilepsia/diagnóstico , Trastornos del Movimiento/diagnóstico , Convulsiones/diagnóstico , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/diagnóstico por imagen , Trastornos Congénitos de Glicosilación/patología , Electroencefalografía , Epilepsia/complicaciones , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/patología , Hipotonía Muscular/diagnóstico por imagen , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Mutación/genética , Fenotipo , Convulsiones/complicaciones , Convulsiones/diagnóstico por imagen , Convulsiones/patología , Adulto Joven
14.
Clin Epigenetics ; 12(1): 139, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928291

RESUMEN

BACKGROUND: PADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo. Maternal-effect variants of the subcortical maternal complex proteins are associated with heterogeneous diseases, including female infertility, hydatidiform mole, and imprinting disorders with multi-locus imprinting disturbance. While the involvement of PADI6 in infertility is well demonstrated, its role in imprinting disorders is less well established. RESULTS: We have identified by whole-exome sequencing analysis four cases of Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance whose mothers are carriers of PADI6 variants. In silico analysis indicates that these variants result in loss of function, and segregation analysis suggests they act as either recessive or dominant-negative maternal-effect mutations. Genome-wide methylation analysis revealed heterogeneous and extensively altered methylation profiles of imprinted loci in the patients, including two affected sisters, but not in their healthy siblings. CONCLUSION: Our results firmly establish the role of PADI6 in imprinting disorders. We report loss-of-function maternal-effect variants of PADI6 that are associated with heterogeneous multi-locus imprinting disturbances in the progeny. The rare finding of two siblings affected by Beckwith-Wiedemann syndrome suggests that in some cases, familial recurrence risk of these variants may be high. However, the heterogeneous phenotypes of the other pedigrees suggest that altered oocyte PADI6 function results in stochastic maintenance of methylation imprinting with unpredictable consequences on early embryo health.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN/genética , Herencia Materna/genética , Arginina Deiminasa Proteína-Tipo 6/genética , Adolescente , Adulto , Síndrome de Beckwith-Wiedemann/diagnóstico , Preescolar , Femenino , Impresión Genómica/genética , Heterocigoto , Humanos , Mola Hidatiforme/epidemiología , Mola Hidatiforme/genética , Lactante , Infertilidad Femenina/epidemiología , Infertilidad Femenina/genética , Masculino , Mutación , Oocitos/metabolismo , Linaje , Fenotipo , Embarazo , Hermanos , Secuenciación del Exoma/métodos
15.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243864

RESUMEN

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Asunto(s)
Anomalías Múltiples/genética , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/genética , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Mutación , Complejo Represivo Polycomb 2/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Mosaicismo , Mutación Missense/genética , Proteínas de Neoplasias , Reproducibilidad de los Resultados , Factores de Transcripción , Adulto Joven
16.
J Neurol ; 267(1): 203-213, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31612321

RESUMEN

ATP8A2-related disorders are autosomal recessive conditions that associate encephalopathy with or without hypotonia, psychomotor delay, abnormal movements, chorea, tremor, optic atrophy and cerebellar atrophy (CARMQ4). Through a multi-centric collaboration, we identified six point mutations (one splice site and five missense mutations) involving ATP8A2 in six individuals from five families. Two patients from one family with the homozygous p.Gly585Val mutation had a milder presentation without encephalopathy. Expression and functional studies of the missense mutations demonstrated that protein levels of four of the five missense variants were very low and lacked phosphatidylserine-activated ATPase activity. One variant p.Ile215Leu, however, expressed at normal levels and displayed phospholipid-activated ATPase activity similar to the non-mutated protein. We therefore expand for the first time the phenotype related to ATP8A2 mutations to less severe forms characterized by cerebellar ataxia without encephalopathy and suggest that ATP8A2 should be analyzed for all cases of syndromic or non-syndromic recessive or sporadic ataxia.


Asunto(s)
Adenosina Trifosfatasas/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/fisiopatología , Proteínas de Transferencia de Fosfolípidos/genética , Adulto , Niño , Preescolar , Consanguinidad , Femenino , Genes Recesivos , Humanos , Lactante , Masculino , Mutación Missense , Linaje , Fenotipo , Mutación Puntual
17.
Eur J Paediatr Neurol ; 20(5): 766-71, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27236536

RESUMEN

BACKGROUND: Moyamoya syndrome represents an etiologically heterogeneous cerebral evolutive angiopathy. It can be associated with both well-characterized and recently described genetic conditions with mendelian inheritance. CASE REPORT: We report the case of a moyamoya angiopathy in a prematurely born girl affected by congenital heart defect, mild facial dysmorphism, mild neurodevelopmental delay and borderline cognitive profile, associated to a de novo complex rearrangement involving the terminal segment of the short arm of chromosome 6. CONCLUSION: To the best of our knowledge, this is the second case described of pediatric moyamoya syndrome associated with a 6p complex rearrangement. Adding this case to the pertinent literature, we discuss the pathogenic role of rearrangements in 6p region in moyamoya syndrome and suggest to investigate in this region potential genes involved in angiogenesis or vascular homeostasis.


Asunto(s)
Cromosomas Humanos Par 6/genética , Enfermedad de Moyamoya/genética , Anomalías Múltiples/genética , Femenino , Reordenamiento Génico , Humanos , Recién Nacido
18.
Brain Dev ; 38(6): 590-6, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26754451

RESUMEN

BACKGROUND: Neurodevelopmental disorders include a broad spectrum of conditions, which are characterized by delayed motor and/or cognitive milestones and by a variable range of intellectual disability with or without an autistic behavior. Several genetic factors have been implicated in intellectual disability onset and exome sequencing studies have recently identified new inherited or de novo mutations in patients with neurodevelopmental disorders. CASE: We report the case of two monozygotic twins who came for the first time to our attention at the age of 20months for a global neurodevelopmental delay associated with an autism spectrum disorder, hypotonia, postnatal microcephaly, stereotypic movements and circadian rhythm alterations in association with late-onset epilepsy. MECP2 sequence was normal. A CGH-array analysis revealed in both twins two maternally inherited duplications on chromosomes 8p22 and 16p13.11. The latter has been previously associated with neurodevelopmental disorders. We performed an exome sequencing analysis on one twin and her parents and identified a CHD2 mutation, previously described in association with a phenotypic spectrum overlapping our patients' phenotype. CONCLUSIONS: This work underlines the importance to consider a CHD2 involvement in children with intellectual disability and autism spectrum disorder even in the absence of epilepsy at an early age. It also highlights the necessity to re-evaluate inherited copy number variants with low penetrance and/or high phenotypic variability because an underlying de novo molecular event can be the major cause of the phenotype. This is essential in order to reach a correct diagnosis and provide the couple with a proper recurrence risk.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Gemelos Monocigóticos/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Análisis Mutacional de ADN/métodos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Discapacidades del Desarrollo/fisiopatología , Enfermedades en Gemelos , Exoma , Cara/anomalías , Técnicas de Genotipaje , Humanos , Lactante , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Proteína 2 de Unión a Metil-CpG/genética , Linaje , Fenotipo
19.
PLoS One ; 10(4): e0123092, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25915946

RESUMEN

BACKGROUND: PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. METHODS: We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. RESULTS AND CONCLUSION: Our data indicate that patients' cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients.


Asunto(s)
Anomalías Congénitas/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Células Cultivadas , Niño , Fosfatidilinositol 3-Quinasa Clase I , Anomalías Congénitas/diagnóstico , Tejido Conectivo/metabolismo , Tejido Conectivo/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Lactante , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Cigoto/metabolismo
20.
BMC Med Genet ; 14: 41, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23551878

RESUMEN

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare autosomal-dominant disorder characterised by facial dysmorphism, growth and psychomotor developmental delay and skeletal defects. To date, causative mutations in the NIPBL (cohesin regulator) and SMC1A (cohesin structural subunit) genes account for > 50% and 6% of cases, respectively. METHODS: We recruited 50 patients with a CdLS clinical diagnosis or with features that overlap with CdLS, who were negative for mutations at NIPBL and SMC1A at molecular screening. Chromosomal rearrangements accounting for the clinical diagnosis were screened for using array Comparative Genomic Hybridisation (aCGH). RESULTS: Four patients were shown to carry imbalances considered to be candidates for having pathogenic roles in their clinical phenotypes: patient 1 had a 4.2 Mb de novo deletion at chromosome 20q11.2-q12; patient 2 had a 4.8 Mb deletion at chromosome 1p36.23-36.22; patient 3 carried an unbalanced translocation, t(7;17), with a 14 Mb duplication of chromosome 17q24.2-25.3 and a 769 Kb deletion at chromosome 7p22.3; patient 4 had an 880 Kb duplication of chromosome 19p13.3, for which his mother, who had a mild phenotype, was also shown to be a mosaic. CONCLUSIONS: Notwithstanding the variability in size and gene content of the rearrangements comprising the four different imbalances, they all map to regions containing genes encoding factors involved in cell cycle progression or genome stability. These functional similarities, also exhibited by the known CdLS genes, may explain the phenotypic overlap between the patients included in this study and CdLS. Our findings point to the complexity of the clinical diagnosis of CdLS and confirm the existence of phenocopies, caused by imbalances affecting multiple genomic regions, comprising 8% of patients included in this study, who did not have mutations at NIPBL and SMC1A. Our results suggests that analysis by aCGH should be recommended for CdLS spectrum cases with an unexplained clinical phenotype and included in the flow chart for diagnosis of cases with a clinical evaluation in the CdLS spectrum.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Inestabilidad Genómica , Proteínas de Ciclo Celular/genética , Niño , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 19 , Cromosomas Humanos Par 4 , Variaciones en el Número de Copia de ADN , Síndrome de Cornelia de Lange/patología , Femenino , Eliminación de Gen , Humanos , Masculino , Fenotipo , Proteínas/genética , Translocación Genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA