Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genetics ; 196(2): 443-53, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336747

RESUMEN

The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Regulación de la Expresión Génica , Mitosis , Dedos de Zinc/fisiología , Animales , Apoptosis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Larva/genética , Larva/metabolismo , Masculino , Organogénesis/genética , Fenotipo , Interferencia de ARN , Huso Acromático/genética , Huso Acromático/metabolismo , Alas de Animales/crecimiento & desarrollo
2.
J Biol Chem ; 287(5): 3156-64, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22167198

RESUMEN

The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn(2+) finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression. DYNLL1 levels are reduced by ∼10-fold in the absence of ASCIZ in human, mouse and chicken cells. ASCIZ binds directly to the Dynll1 promoter and regulates its activity in a Zn(2+) finger-dependent manner. DYNLL1 protein in turn interacts with ten binding sites in the ASCIZ transcription activation domain, and high DYNLL1 levels inhibit the transcriptional activity of ASCIZ. In addition, DYNLL1 was also required for DNA damage-induced ASCIZ focus formation. The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNLL1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs. The ASCIZ-DYNLL1 feedback loop represents a novel mechanism for auto-regulation of gene expression, where the gene product directly inhibits the transcriptional activator while bound at its own promoter.


Asunto(s)
Proteínas Portadoras/metabolismo , Dineínas Citoplasmáticas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/fisiología , Zinc/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Línea Celular , Pollos , Dineínas Citoplasmáticas/genética , Humanos , Ratones , Proteínas Nucleares/genética , Factores de Transcripción , Transcripción Genética/fisiología , Dedos de Zinc
3.
PLoS Genet ; 6(10): e1001170, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20975950

RESUMEN

Zn²(+)-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn²(+)-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Reparación del ADN/fisiología , Pulmón/embriología , Proteínas Nucleares/fisiología , Organogénesis/fisiología , Animales , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Senescencia Celular , Daño del ADN , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Genotipo , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidantes/farmacología , Factores de Tiempo , Tráquea/embriología , Factores de Transcripción , Rayos Ultravioleta
4.
EMBO J ; 24(13): 2447-57, 2005 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-15933716

RESUMEN

Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.


Asunto(s)
Apoptosis , Daño del ADN , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/fisiología , Proteínas Adaptadoras Transductoras de Señales , Disparidad de Par Base , Proteínas Portadoras , Línea Celular Tumoral , Supervivencia Celular , Humanos , Homólogo 1 de la Proteína MutL , Proteínas de Neoplasias/fisiología , Estructura Terciaria de Proteína , Recombinasa Rad51 , Transducción de Señal
5.
Genetics ; 169(1): 65-75, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15466434

RESUMEN

DNA damage checkpoints regulate gene expression at the transcriptional and post-transcriptional level. Some components of the yeast Ccr4-Not complex, which regulates transcription as well as transcript turnover, have previously been linked to DNA damage responses, but it is unclear if this involves transcriptional or post-transcriptional functions. Here we show that CCR4 and CAF1, which together encode the major cytoplasmic mRNA deadenylase complex, have complex genetic interactions with the checkpoint genes DUN1, MRC1, RAD9, and RAD17 in response to DNA-damaging agents hydroxyurea (HU) and methylmethane sulfonate (MMS). The exonuclease-inactivating ccr4-1 point mutation mimics ccr4Delta phenotypes, including synthetic HU hypersensitivity with dun1Delta, demonstrating that Ccr4-Not mRNA deadenylase activity is required for DNA damage responses. However, ccr4Delta and caf1Delta DNA damage phenotypes and genetic interactions with checkpoint genes are not identical, and deletions of some Not components that are believed to predominantly function at the transcriptional level rather than mRNA turnover, e.g., not5Delta, also lead to increased DNA damage sensitivity and synthetic HU hypersensitivity with dun1Delta. Taken together, our data thus suggest that both transcriptional and post-transcriptional functions of the Ccr4-Not complex contribute to the DNA damage response affecting gene expression in a complex manner.


Asunto(s)
Daño del ADN , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fenotipo , Mutación Puntual , Ribonucleasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
6.
J Biol Chem ; 279(38): 39636-44, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15271990

RESUMEN

Saccharomyces cerevisiae Rad53 has crucial functions in many aspects of the cellular response to DNA damage and replication blocks. To coordinate these diverse roles, Rad53 has two forkhead-associated (FHA) phosphothreonine-binding domains in addition to a kinase domain. Here, we show that the conserved N-terminal FHA1 domain is essential for the function of Rad53 to prevent the firing of late replication origins in response to replication blocks. However, the FHA1 domain is not required for Rad53 activation during S phase, and as a consequence of defective downstream signaling, Rad53 containing an inactive FHA1 domain is hyperphosphorylated in response to replication blocks. The FHA1 mutation dramatically hypersensitizes strains with defects in the cell cycle-wide checkpoint pathways (rad9Delta and rad17Delta) to DNA damage, but it is largely epistatic with defects in the replication checkpoint (mrc1Delta). Altogether, our data indicate that the FHA1 domain links activated Rad53 to downstream effectors in the replication checkpoint. The results reveal an important mechanistic difference to the homologous Schizosaccharomyces pombe FHA domain that is required for Mrc1-dependent activation of the corresponding Cds1 kinase. Surprisingly, despite the severely impaired replication checkpoint and also G(2)/M checkpoint functions, the FHA1 mutation by itself leads to only moderate viability defects in response to DNA damage, highlighting the importance of functionally redundant pathways.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Proteínas de Ciclo Celular/química , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN , Factores de Transcripción Forkhead , Genes cdc/fisiología , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Origen de Réplica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Factores de Transcripción/genética
7.
IUBMB Life ; 55(1): 23-7, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12716058

RESUMEN

Forkhead-associated (FHA) domains are present in >200 diverse proteins in all phyla from bacteria to mammals and seem to be particularly prevalent in proteins with cell cycle control functions. Recent work from several laboratories has considerably improved our understanding of the structure and function of these domains that were virtually unknown a few years ago, and the first disease associations of FHA domains have now emerged. FHA domains form 11-stranded beta-sandwiches that contain some 100-180 amino acid residues with a high degree of sequence diversity. FHA domains act as phosphorylation-dependent protein-protein interaction modules that preferentially bind to phospho-threonine residues in their targets. Interestingly, point mutations in the human CHK2 gene that lead to single-residue amino acid substitutions in the FHA domain of this cell cycle checkpoint kinase have been found to cause a subset of cases of the Li-Fraumeni multi-cancer syndrome.


Asunto(s)
Fosfotreonina/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
8.
Mol Cell Biol ; 22(8): 2821-9, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11909974

RESUMEN

Ca(2+) signaling plays a central role in cardiac contractility and adaptation to increased hemodynamic demand. We have generated mice with a targeted deletion of the S100A1 gene coding for the major cardiac isoform of the large multigenic S100 family of EF hand Ca(2+)-binding proteins. S100A1(-/-) mice have normal cardiac function under baseline conditions but have significantly reduced contraction rate and relaxation rate responses to beta-adrenergic stimulation that are associated with a reduced Ca(2+) sensitivity. In S100A1(-/-) mice, basal left-ventricular contractility deteriorated following 3-week pressure overload by thoracic aorta constriction despite a normal adaptive hypertrophy. Surprisingly, heterozygotes also had an impaired response to acute beta-adrenergic stimulation but maintained normal contractility in response to chronic pressure overload that coincided with S100A1 upregulation to wild-type levels. In contrast to other genetic models with impaired cardiac contractility, loss of S100A1 did not lead to cardiac hypertrophy or dilation in aged mice. The data demonstrate that high S100A1 protein levels are essential for the cardiac reserve and adaptation to acute and chronic hemodynamic stress in vivo.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Contracción Miocárdica/fisiología , Agonistas Adrenérgicos beta/farmacología , Envejecimiento/fisiología , Animales , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/fisiología , Marcación de Gen , Ventrículos Cardíacos/efectos de los fármacos , Hemodinámica , Heterocigoto , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Receptores Adrenérgicos beta/fisiología , Proteínas S100 , Estrés Fisiológico/fisiopatología , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA