Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 176: 116814, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820974

RESUMEN

Diabetes and derived complications, especially diabetic nephropathy and neuropathy annually cause great morbimortality worldwide. 5-hydroxytryptamine (5-HT) acts as a modulator of renal sympathetic input and vascular tone. In this line, 5-HT2 receptor blockade has been linked with reduced incidence and progression of diabetic microvascular alterations. In this work, we aimed to determine, in diabetic rats, whether 5-HT2 blockade ameliorates renal function and to characterize the serotonergic modulatory action on renal sympathetic neurotransmission. Diabetes was induced in male Wistar rats by alloxan administration (150 mg/kg, s.c.), and sarpogrelate (30 mg/kg·day, p.o.; 5-HT2 antagonist) was administered for 14 days (DM-S). Normoglycemic and diabetic (DM) animals were maintained as aged-matched controls. At 28th day, DM-S animals were anesthetized and prepared for the in situ autoperfusion of the kidney. Renal vasoconstrictor responses were induced electrically or by i.a. noradrenaline (NA) administration. The role of 5-HT and selective 5-HT agonist/antagonist were studied on these renal vasopressor responses. Sarpogrelate treatment decreased renal sympathetic-induced vasopressor responses, reduced renal hypertrophy and kidney damage markers increased in DM. Intraarterial 5-HT inhibited the sympathetic-induced renal vasoconstrictions, effect reproduced by 5-CT, AS-19, L-694,247 and LY 344864 (5-HT1/5/7, 5-HT7, 5-HT1D and 5-HT1F receptor agonists, respectively). Blocking 5-HT1D/1F/7 receptors completely abolished the 5-CT sympatho-inhibition. NA vasoconstrictions were not altered by any of the 5-HT agonists tested. Thus, in experimental diabetes, chronic sarpogrelate treatment reduces renal damage markers, kidney hypertrophy and renal sympathetic hyperactivity and modifies serotonergic modulation of renal sympathetic neurotransmission, causing a sympatho-inhibition by prejunctional 5-HT1D/1F and 5-HT7 activation.


Asunto(s)
Diabetes Mellitus Experimental , Riñón , Ratas Wistar , Succinatos , Sistema Nervioso Simpático , Animales , Succinatos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Riñón/efectos de los fármacos , Riñón/inervación , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Ratas , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Serotonina/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/fisiopatología , Vasoconstricción/efectos de los fármacos
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674892

RESUMEN

Renal vasculature, which is highly innervated by sympathetic fibers, contributes to cardiovascular homeostasis. This renal sympathetic outflow is inhibited by 5-HT in normoglycaemic rats. Considering that diabetes induces cardiovascular complications, we aimed to determine whether diabetic state modifies noradrenergic input at renal level and its serotonergic modulation in rats. Alloxan diabetic rats were anaesthetized (pentobarbital; 60 mg/kg i.p.) and prepared for in situ autoperfusion of the left kidney to continuously measure systemic blood pressure (SBP), heart rate (HR), and renal perfusion pressure (RPP). Electrical stimulation of renal sympathetic outflow induces frequency-dependent increases (Δ) in RPP (23.9 ± 2.1, 59.5 ± 1.9, and 80.5 ± 3.5 mm Hg at 2, 4, and 6 Hz, respectively), which were higher than in normoglycaemic rats, without modifying HR or SBP. Intraarterial bolus of 5-HT and 5-CT (5-HT1/5/7 agonist) reduced electrically induced ΔRPP. Only L-694,247 (5-HT1D agonist) reproduced 5-CT inhibition on sympathetic-induced vasoconstrictions, whereas it did not modify exogenous noradrenaline-induced ΔRPP. 5-CT inhibition was exclusively abolished by i.v. bolus of LY310762 (5-HT1D antagonist). An inhibitor of guanylyl cyclase, ODQ (i.v.), completely reversed the L-694,247 inhibitory effect. In conclusion, diabetes induces an enhancement in sympathetic-induced vasopressor responses at the renal level. Prejunctional 5-HT1D receptors, via the nitric oxide pathway, inhibit noradrenergic-induced vasoconstrictions in diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Serotonina , Ratas , Animales , Serotonina/metabolismo , Ratas Wistar , Receptor de Serotonina 5-HT1D/metabolismo , Diabetes Mellitus Experimental/metabolismo , Riñón , Norepinefrina/farmacología , Norepinefrina/metabolismo , Sistema Nervioso Simpático/metabolismo , Estimulación Eléctrica , Presión Sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA