Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101226, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38516692

RESUMEN

Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein-protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.

2.
Front Immunol ; 14: 1227467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841276

RESUMEN

Bacterial infections still impose a significant burden on humanity, even though antimicrobial agents have long since been developed. In addition to individual severe infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-resistant bacteria grows with time, putting us at inferiority. Although tremendous resources have been devoted to the development of antimicrobial agents, we have yet to recover from the lost ground we have been driven into. Looking back at the evolution of treatment for cancer, which, like infectious diseases, has the similarity that host immunity eliminates the lesion, the development of drugs to eliminate the tumor itself has shifted from a single-minded focus on drug development to the establishment of a treatment strategy in which the de-suppression of host immunity is another pillar of treatment. In infectious diseases, on the other hand, the development of therapies that strengthen and support the immune system has only just begun. Among innate immunity, the first line of defense that bacteria encounter after invading the host, the molecular mechanisms of the phagolysosome pathway, which begins with phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a large number of strategies to escape and survive the pathway. Although the full picture is still unfathomable, the molecular mechanisms have been elucidated for some of them, providing sufficient clues for intervention. In this article, we review the host defense mechanisms and bacterial evasion mechanisms and discuss the possibility of host-directed therapy for bacterial infection by intervening in the phagolysosome pathway.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Enfermedades Transmisibles , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Inmunidad Innata , Bacterias , Fagosomas/microbiología
3.
Pathol Int ; 72(9): 457-463, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35801418

RESUMEN

Angiosarcoma is a rare malignant tumor derived from vascular endothelial cells and has a poor prognosis. We have experienced a case of multiple breast angiosarcoma for which multiple resections had been performed during the course of its progression over a period of more than 15 years, allowing comprehensive genetic mutation analysis. Somatic mutations in several cancer-related genes were detected, but no previously reported driver gene mutations of angiosarcoma were evident. Several germline mutations associated with malignancy, such as single nucleotide polymorphisms in Fibroblast Growth Factor Receptor 4 (FGFR4) (p.Gly388Arg, rs351855), Kinase Insert Domain Receptor (KDR) (Gln472His, rs1870377) and tumor protein p53 (TP53) (p.Pro72Arg, rs1042522) were detected. Common signatures and genetic mutations were scarce in the tumor samples subjected to genetic mutational analysis. These findings suggested that this case was very probably a multiprimary angiosarcoma.


Asunto(s)
Hemangiosarcoma , Neoplasias de la Mama , Células Endoteliales/patología , Hemangiosarcoma/genética , Hemangiosarcoma/patología , Humanos , Mutación , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Proteína p53 Supresora de Tumor/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA