Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 3): 416-33, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27240774

RESUMEN

The cis- and trans-isomers of the polycyclic aromatic compound perinone, C26H12N4O2, form a solid solution (Vat Red 14). This solid solution is isotypic to the crystal structures of cis-perinone (Pigment Red 194) and trans-perinone (Pigment Orange 34) and exhibits a combined positional and orientational disorder: In the crystal, each molecular position is occupied by either a cis- or trans-perinone molecule, both of which have two possible molecular orientations. The structure of cis-perinone exhibits a twofold orientational disorder, whereas the structure of trans-perinone is ordered. The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic positions, but also the site occupancies and anisotropic displacement parameters.

2.
Artículo en Inglés | MEDLINE | ID: mdl-24675599

RESUMEN

The ß-phase of Pigment Red 170, C26H22N4O4, which is used industrially for the colouration of plastics, crystallizes in a layer structure with stacking disorder. The disorder is characterized by a lateral translational shift between the layers with a component ty of either +0.421 or -0.421. Order-disorder (OD) theory is used to derive the possible stacking sequences. Extensive lattice-energy minimizations were carried out on a large set of structural models with different stacking sequences, containing up to 2688 atoms. These calculations were used to determine the actual local structures and to derive the stacking probabilities. It is shown that local structures and energies depend not only on the arrangement of neighbouring layers, but also next-neighbouring layers. Large models with 100 layers were constructed according to the derived stacking probabilities. The diffraction patterns simulated from those models are in good agreement with the experimental single-crystal and powder diffraction patterns. Electron diffraction investigation on a nanocrystalline industrial sample revealed the same disorder. Hence the lattice-energy minimizations are able to explain the disorder and the diffuse scattering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA