Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cells ; 12(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998365

RESUMEN

In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription-replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication-transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.


Asunto(s)
Estructuras R-Loop , Sirtuina 1 , Humanos , ADN Ribosómico/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Replicación del ADN/genética , Envejecimiento/genética
2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687774

RESUMEN

This study demonstrates the development of a humanized luciferase imaging reporter based on a recently discovered mushroom luciferase (Luz) from Neonothopanus nambi. In vitro and in vivo assessments showed that human-codon-optimized Luz (hLuz) has significantly higher activity than native Luz in various cancer cell types. The potential of hLuz in non-invasive bioluminescence imaging was demonstrated by human tumor xenografts subcutaneously and by the orthotopic lungs xenograft in immunocompromised mice. Luz enzyme or its unique 3OH-hispidin substrate was found to be non-cross-reacting with commonly used luciferase reporters such as Firefly (FLuc2), Renilla (RLuc), or nano-luciferase (NLuc). Based on this feature, a non-overlapping, multiplex luciferase assay using hLuz was envisioned to surpass the limitation of dual reporter assay. Multiplex reporter functionality was demonstrated by designing a new sensor construct to measure the NF-κB transcriptional activity using hLuz and utilized in conjunction with two available constructs, p53-NLuc and PIK3CA promoter-FLuc2. By expressing these constructs in the A2780 cell line, we unveiled a complex macromolecular regulation of high relevance in ovarian cancer. The assays performed elucidated the direct regulatory action of p53 or NF-κB on the PIK3CA promoter. However, only the multiplexed assessment revealed further complexities as stabilized p53 expression attenuates NF-κB transcriptional activity and thereby indirectly influences its regulation on the PIK3CA gene. Thus, this study suggests the importance of live cell multiplexed measurement of gene regulatory function using more than two luciferases to address more realistic situations in disease biology.


Asunto(s)
Agaricales , Neoplasias Ováricas , Humanos , Animales , Femenino , Ratones , FN-kappa B , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/genética , Luciferasas/genética , Agaricales/genética , Fosfatidilinositol 3-Quinasa Clase I
3.
Nucleic Acids Res ; 50(9): 5111-5128, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35524559

RESUMEN

During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Origen de Réplica , Sirtuina 1 , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
4.
J Exp Clin Cancer Res ; 41(1): 126, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387667

RESUMEN

BACKGROUND: Compared to normal cells, cancer cells exhibit a higher level of oxidative stress, which primes key cellular and metabolic pathways and thereby increases their resilience under oxidative stress. This higher level of oxidative stress also can be exploited to kill tumor cells while leaving normal cells intact. In this study we have found that isovalerylspiramycin I (ISP I), a novel macrolide antibiotic, suppresses cancer cell growth and tumor metastases by targeting the nucleolar protein selenoprotein H (SELH), which plays critical roles in keeping redox homeostasis and genome stability in cancer cells. METHODS: We developed ISP I through genetic recombination and tested the antitumor effects using primary and metastatic cancer models. The drug target was identified using the drug affinity responsive target stability (DARTS) and mass spectrum assays. The effects of ISP I were assessed for reactive oxygen species (ROS) generation, DNA damage, R-loop formation and its impact on the JNK2/TIF-IA/RNA polymerase I (POLI) transcription pathway. RESULTS: ISP I suppresses cancer cell growth and tumor metastases by targeting SELH. Suppression of SELH induces accumulation of ROS and cancer cell-specific genomic instability. The accumulation of ROS in the nucleolus triggers nucleolar stress and blocks ribosomal RNA transcription via the JNK2/TIF-IA/POLI pathway, causing cell cycle arrest and apoptosis in cancer cells. CONCLUSIONS: We demonstrated that ISP I links cancer cell vulnerability to oxidative stress and RNA biogenesis by targeting SELH. This suggests a potential new cancer treatment paradigm, in which the primary therapeutic agent has minimal side-effects and hence may be useful for long-term cancer chemoprevention.


Asunto(s)
Nucléolo Celular , ARN Ribosómico , Nucléolo Celular/metabolismo , Inestabilidad Genómica , Humanos , Proteínas Nucleares/metabolismo , ARN Ribosómico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
5.
Trends Genet ; 38(2): 169-181, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34625299

RESUMEN

Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.


Asunto(s)
Inestabilidad Genómica , Origen de Réplica , ADN , Daño del ADN , Replicación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Origen de Réplica/genética
6.
Nat Commun ; 12(1): 3448, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103496

RESUMEN

Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.


Asunto(s)
Replicación del ADN , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclopentanos/farmacología , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Genoma Humano , Humanos , Mitosis/efectos de los fármacos , Modelos Biológicos , Pirimidinas/farmacología , Origen de Réplica/genética
7.
Exp Mol Med ; 52(10): 1637-1651, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33005013

RESUMEN

The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.


Asunto(s)
Ciclo Celular , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Biomarcadores , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Regulación de la Expresión Génica , Humanos , Transducción de Señal
8.
Nat Commun ; 11(1): 24, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911655

RESUMEN

The spindle assembly checkpoint (SAC) prevents premature chromosome segregation by inactivating the anaphase promoting complex/cyclosome (APC/C) until all chromosomes are properly attached to mitotic spindles. Here we identify a role for Cullin-RING ubiquitin ligase complex 4 (CRL4), known for modulating DNA replication, as a crucial mitotic regulator that triggers the termination of the SAC and enables chromosome segregation. CRL4 is recruited to chromatin by the replication origin binding protein RepID/DCAF14/PHIP. During mitosis, CRL4 dissociates from RepID and replaces it with RB Binding Protein 7 (RBBP7), which ubiquitinates the SAC mediator BUB3 to enable mitotic exit. During interphase, BUB3 is protected from CRL4-mediated degradation by associating with promyelocytic leukemia (PML) nuclear bodies, ensuring its availability upon mitotic onset. Deficiencies in RepID, CRL4 or RBBP7 delay mitotic exit, increase genomic instability and enhance sensitivity to paclitaxel, a microtubule stabilizer and anti-tumor drug.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metafase , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mitosis , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Unión Proteica , Proteolisis , Proteína 7 de Unión a Retinoblastoma/genética , Proteína 7 de Unión a Retinoblastoma/metabolismo , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA