Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Dermatology ; 237(2): 296-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32344413

RESUMEN

BACKGROUND: Little information is available about the complexity and function of skin cells contributing to the high stability of tattoos. It has been shown that dermal macrophages play an important role in the storage and maintenance of pigment particles. By contrast, the impact of dermal fibroblasts, forming the connective tissue of the skin, on the stability of the tattoo is not known. METHOD: In this study, we compared the cell number and the particle load in dermal macrophages versus dermal fibroblasts, isolated from tail skin of tattooed mice. RESULTS: Microscopic analysis revealed that both cell populations contained the tattoo particles, although in largely different amounts. A small number of macrophages with high side scatter intensity contained a large quantity of pigment particles, whereas a high number of dermal fibroblasts harbored only a few pigment particles. Using the CD64dtr mouse model that allows for selective, diphtheria toxin-mediated depletion of macrophages, we have previously shown that macrophages hold the tattoo in place by capture-release and recapture cycles. In the tattooed skin of macrophage-depleted mice, the content of pigment particles in fibroblasts did not change; however, the total number of fibroblasts carrying particles increased. CONCLUSION: The present study demonstrates that dermal macrophages and fibroblasts contribute in different ways to the tattoo stability and further improves our knowledge on tattoo persistence.


Asunto(s)
Colorantes , Dermis/citología , Fibroblastos/fisiología , Macrófagos/fisiología , Tatuaje , Animales , Recuento de Células , Tinta , Ratones , Microscopía
2.
J Immunol ; 205(10): 2577-2582, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33037141

RESUMEN

Immune homeostasis in peripheral tissues is, to a large degree, maintained by the differentiation and action of regulatory T cells (Treg) specific for tissue Ags. Using a novel mouse model, we have studied the differentiation of naive CD4+ T cells into Foxp3+ Treg in response to a cutaneous Ag (OVA). We found that expression of OVA resulted in fatal autoimmunity and in prevention of peripheral Treg generation. Inhibiting mTOR activity with rapamycin rescued the generation of Foxp3+ T cells. When we varied the level of Ag expression to modulate TCR signaling, we found that low Ag concentrations promoted the generation of Foxp3+ T cells, whereas high levels expanded effector T cells and caused severe autoimmunity. Our findings indicate that the expression level of tissue Ag is a key determinant of the balance between tissue-reactive effector and peripheral Foxp3+ T cells, which determines the choice between tolerance and autoimmunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/patología , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Transgénicos , Ovalbúmina/genética , Ovalbúmina/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Sirolimus/farmacología , Piel/inmunología , Piel/patología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
3.
Allergy ; 75(11): 2909-2919, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32436591

RESUMEN

BACKGROUND: Tropomyosins are highly conserved proteins, an attribute that forms the molecular basis for their IgE antibody cross-reactivity. Despite sequence similarities, their allergenicity varies greatly between ingested and inhaled invertebrate sources. In this study, we investigated the relationship between the structural stability of different tropomyosins, their endolysosomal degradation patterns, and T-cell reactivity. METHODS: We investigated the differences between four tropomyosins-the major shrimp allergen Pen m 1 and the minor allergens Der p 10 (dust mite), Bla g 7 (cockroach), and Ani s 3 (fish parasite)-in terms of IgE binding, structural stability, endolysosomal degradation and subsequent peptide generation, and T-cell cross-reactivity in a BALB/c murine model. RESULTS: Tropomyosins displayed different melting temperatures, which did not correlate with amino acid sequence similarities. Endolysosomal degradation experiments demonstrated differential proteolytic digestion, as a function of thermal stability, generating different peptide repertoires. Pen m 1 (Tm 42°C) and Der p 10 (Tm 44°C) elicited similar patterns of endolysosomal degradation, but not Bla g 7 (Tm 63°C) or Ani s 3 (Tm 33°C). Pen m 1-specific T-cell clones, with specificity for regions highly conserved in all four tropomyosins, proliferated weakly to Der p 10, but did not proliferate to Bla g 7 and Ani s 3, indicating lack of T-cell epitope cross-reactivity. CONCLUSIONS: Tropomyosin T-cell cross-reactivity, unlike IgE cross-reactivity, is dependent on structural stability rather than amino acid sequence similarity. These findings contribute to our understanding of cross-sensitization among different invertebrates and design of suitable T-cell peptide-based immunotherapies for shrimp and related allergies.


Asunto(s)
Alérgenos , Tropomiosina , Animales , Reacciones Cruzadas , Inmunoglobulina E , Ratones , Linfocitos T
4.
J Allergy Clin Immunol ; 143(1): 335-345.e12, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30009843

RESUMEN

BACKGROUND: Donor-specific antibodies of the IgG isotype are measured routinely for diagnostic purposes in renal transplant recipients and are associated with antibody-mediated rejection and long-term graft loss. OBJECTIVE: This study aimed to investigate whether MHC-specific antibodies of the IgE isotype are induced during allograft rejection. METHODS: Anti-MHC/HLA IgE levels were measured in sera of mice grafted with skin or heart transplants from various donor strains and in sera of kidney transplant patients with high levels of HLA IgG. Mediator release was triggered in vitro by stimulating basophils that were coated with murine or human IgE-positive serum, respectively, with specific recombinant MHC/HLA antigens. Kidney tissue samples obtained from organ donors were analyzed by using flow cytometry for cells expressing the high-affinity receptor for IgE (FcεRI). RESULTS: Donor MHC class I- and MHC class II-specific IgE was found on acute rejection of skin and heart grafts in several murine strain combinations, as well as during chronic antibody-mediated heart graft rejection. Anti-HLA IgE, including donor HLA class I and II specificities, was identified in a group of sensitized transplant recipients. Murine and human anti-MHC/HLA IgE triggered mediator release in coated basophils on stimulation with specific MHC/HLA antigens. HLA-specific IgE was not linked to atopy, and allergen-specific IgE present in allergic patients did not cross-react with HLA antigens. FcεRI+ cells were found in the human renal cortex and medulla and provide targets for HLA-specific IgE. CONCLUSION: These results demonstrate that MHC/HLA-specific IgE develops during an alloresponse and is functional in mediating effector mechanisms.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Corazón , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoglobulina E/inmunología , Trasplante de Riñón , Trasplante de Piel , Aloinjertos , Animales , Femenino , Rechazo de Injerto/patología , Humanos , Inmunoglobulina G/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C
5.
Pediatr Allergy Immunol ; 29(7): 679-688, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063806

RESUMEN

Allergen-specific immunotherapy, which is performed by subcutaneous injection or sublingual application of allergen extracts, represents an effective treatment against type I allergic diseases. However, due to the long duration and adverse reactions, only a minority of patients decides to undergo this treatment. Alternatively, early prophylactic intervention in young children has been proposed to stop the increase in patient numbers. Plasmid DNA and mRNA vaccines encoding allergens have been shown to induce T helper 1 as well as T regulatory responses, which modulate or counteract allergic T helper 2-biased reactions. With regard to prophylactic immunization, additional safety measurements are required. In contrast to crude extracts, genetic vaccines provide the allergen at high purity. Moreover, by targeting the encoded allergen to subcellular compartments for degradation, release of native allergen can be avoided. Due to inherent safety features, mRNA vaccines could be the candidates of choice for preventive allergy immunizations. The subtle priming of T helper 1 immunity induced by this vaccine type closely resembles responses of non-allergic individuals and-by boosting via natural allergen exposure-could suffice for long-term protection from type I allergy.


Asunto(s)
Desensibilización Inmunológica/métodos , Hipersensibilidad/terapia , ARN Mensajero/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Alérgenos/genética , Alérgenos/inmunología , Animales , Humanos , Hipersensibilidad/inmunología
7.
J Control Release ; 266: 87-99, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28919557

RESUMEN

Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.


Asunto(s)
Alérgenos/administración & dosificación , Antígenos de Plantas/administración & dosificación , Células Dendríticas/inmunología , Rayos Láser , Mananos/administración & dosificación , Piel/inmunología , Vacunación/métodos , Administración Cutánea , Animales , Activación de Complemento , Femenino , Humanos , Inmunoglobulina E/inmunología , Ratones Endogámicos BALB C , Porosidad , Células TH1/inmunología , Células Th17/inmunología
8.
J Immunol ; 199(5): 1626-1634, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28739880

RESUMEN

The skin hosts a variety of dendritic cells (DCs), which act as professional APC to control cutaneous immunity. Langerhans cells (LCs) are the only DC subset in the healthy epidermis. However, due to the complexity of the skin DC network, their relative contribution to either immune activation or immune tolerance is still not entirely understood. To specifically study the function of LCs in vivo, without altering the DC subset composition in the skin, we have generated transgenic mouse models for tamoxifen-inducible de novo expression of Ags in LCs but no other langerin+ DCs. Therefore, this system allows for LC-restricted Ag presentation to T cells. Presentation of nonsecreted OVA (GFPOVA) by steady-state LCs resulted in transient activation of endogenous CTL in transgenic mice. However, when these mice were challenged with OVA by gene gun immunization in the contraction phase of the primary CTL response they did not respond with a recall of CTL memory but, instead, with robust Ag-specific CTL tolerance. We found regulatory T cells (Tregs) enriched in the skin of tolerized mice, and depletion of Tregs or adoptive experiments revealed that Tregs were critically involved in CTL tolerance. By contrast, when OVA was presented by activated LCs, a recallable CTL memory response developed in transgenic mice. Thus, neoantigen presentation by epidermal LCs results in either robust CTL tolerance or CTL memory, and this decision-making depends on the activation state of the presenting LCs.


Asunto(s)
Tolerancia Inmunológica , Células de Langerhans/inmunología , Piel/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Presentación de Antígeno , Autoantígenos/genética , Autoantígenos/inmunología , Células Cultivadas , Regulación de la Expresión Génica , Memoria Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Ovalbúmina/genética , Ovalbúmina/inmunología , Tamoxifeno/administración & dosificación
10.
Expert Rev Vaccines ; 16(5): 479-489, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28290225

RESUMEN

INTRODUCTION: In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed.


Asunto(s)
Antígenos/química , Antígenos/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Vacunas/inmunología , Animales , Modelos Animales de Enfermedad , Diseño de Fármacos , Estabilidad de Medicamentos , Humanos , Pliegue de Proteína
11.
Vaccine ; 35(14): 1802-1809, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28117172

RESUMEN

BACKGROUND: Methods to deliver an antigen into the skin in a painless, defined, and reproducible manner are essential for transcutaneous immunization (TCI). Here, we employed an ablative fractional infrared laser (P.L.E.A.S.E. Professional) to introduce clinically relevant vaccines into the skin. To elicit the highest possible antibody titers with this system, we optimized different laser parameters, such as fluence and pore number per area, and tested various adjuvants. METHODS: BALB/c mice were immunized with Hepatitis B surface antigen (HBsAg) by laser-microporation. Adjuvants used were alum, CRM197, monophosphoryl lipid A, heat-labile enterotoxin subunit B of E. coli (LT-B), and CpG ODN1826. The influence of different fluences (2.1 to 16.8J/cm2) and pore densities (5-15%) was investigated. Furthermore, immunogenicity of HBsAg and the commercially available conjugate vaccines ActHIB® and Menveo® applied via TCI was compared to standard i.m. injection. Antigen-specific antibody titers were assessed by luminometric ELISA. RESULTS: Antibody titers against HBsAg were dependent on pore depth and peaked at a fluence of 8.4J/cm2. Immunogenicity was independent of pore density. Adjuvantation with alum significantly reduced antibody titers after TCI, whereas other adjuvants only induced marginal changes in total IgG titers. LT-B and CpG shifted the polarization of the immune response as indicated by decreased IgG1/IgG2a ratios. HBsAg/LT-B applied via TCI induced similar antibody titers compared to i.m. injection of HBsAg/alum. In contrast to i.m. injection, we observed a dose response from 5 to 20µg after TCI. Both, ActHIB® and Menveo® induced high antibody titers after TCI, which were comparable to i.m. injection. CONCLUSIONS: Alum, the most commonly used adjuvant, is contraindicated for transcutaneous vaccination via laser-generated micropores. TCI with optimized laser parameters induces high antibody titers, which cannot be significantly increased by the tested adjuvants. Commercially available vaccines formulated without alum have the potential for successful TCI via laser-generated micropores, without the need for reformulation.


Asunto(s)
Rayos Infrarrojos , Terapia por Láser/métodos , Vacunación/métodos , Adyuvantes Inmunológicos/administración & dosificación , Administración Cutánea , Compuestos de Alumbre/administración & dosificación , Animales , Formación de Anticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Anticuerpos contra la Hepatitis B/sangre , Anticuerpos contra la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/administración & dosificación , Inmunidad Humoral , Inmunización/métodos , Ratones
12.
J Physiol Anthropol ; 36(1): 10, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086991

RESUMEN

BACKGROUND: The specific microclimate of alpine waterfalls with high levels of ionized water aerosols has been suggested to trigger beneficial immunological and psychological effects. In the present three-armed randomized controlled clinical study, we focused on effects on (i) immunological reagibility, on (ii) physiological stress responses, and on (iii) stress-related psychological parameters. METHODS: People with moderate to high stress levels (n = 65) spent an active sojourn with daily hiking tours in the National Park Hohe Tauern (Großkirchheim, Austria). Half of the group was exposed to water aerosol of an alpine waterfall for 1 h/day (first arm, n = 33), whereas the other half spent the same time at a distant site (second arm, n = 32). A third arm (control, n = 26) had no intervention (except vaccination) and stayed at home, maintaining their usual lifestyle. The effect of the interventions on the immune system was tested by oral vaccination with an approved cholera vaccine and measuring specific salivary IgA antibody titers. Lung function was determined by peak expiratory flow measurement. Electric skin conductance, heart rate, and adaption of respiration rate were assessed as physiological stress parameters. Psychological stress-related parameters were analyzed by questionnaires and scales. RESULTS: Compared to the control group, both intervention groups showed improvement of the lung function and of most physiological stress test parameters. Analysis of the mucosal immune response revealed a waterfall-specific beneficial effect with elevated IgA titers in the waterfall group. In line with these results, exposure to waterfall revealed an additional benefit concerning psychological parameters such as subjective stress perception (measured via visual analog scale), the Global Severity Index (GSI), and the Positive Symptom Total (PST). CONCLUSIONS: Our study provides new data, which strongly support an "added value" of exposure to waterfall microclimate when combined with a therapeutic sojourn at high altitude including regular physical activity.


Asunto(s)
Agua Dulce , Fenómenos Geológicos , Inmunidad Mucosa/inmunología , Estrés Fisiológico/inmunología , Adulto , Aerosoles , Anticuerpos Antibacterianos/análisis , Vacunas contra el Cólera/inmunología , Enfermedad Crónica , Femenino , Humanos , Inmunoglobulina A/análisis , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Saliva/química , Adulto Joven
13.
Methods Mol Biol ; 1499: 123-139, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27987146

RESUMEN

Due to the worldwide increase in allergies and a limited efficacy of therapeutic interventions, the need for prophylactic vaccination against allergies has been recognized. mRNA and DNA vaccines have demonstrated their high potential for preventing allergic sensitization by inducing an immunological bias that prevents TH2 sensitization. However, only mRNA vaccines fulfill the stringent safety requirements for vaccination of healthy children. In this chapter, we describe the generation of conventional as well as self-replicating mRNA vaccines and methods to test their prophylactic efficacy in animal models.


Asunto(s)
Hipersensibilidad/inmunología , ARN Mensajero/inmunología , Vacunas/inmunología , Alérgenos/inmunología , Animales , Línea Celular , Femenino , Ratones , Ratones Endogámicos BALB C , Ratas , Vacunación/métodos , Vacunas de ADN/inmunología
14.
Front Cell Neurosci ; 10: 169, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445696

RESUMEN

Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus-a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1(+) microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1(+)MHCII(+) cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX(+) cells was clearly increased in the allergy animals. Moreover, there were more BrdU(+) cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU(+)NeuN(+) cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis.

15.
Expert Opin Drug Deliv ; 13(12): 1777-1788, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27321476

RESUMEN

INTRODUCTION: Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.


Asunto(s)
Desensibilización Inmunológica/métodos , Hipersensibilidad/terapia , Nanopartículas , Adyuvantes Inmunológicos/administración & dosificación , Alérgenos/inmunología , Humanos , Inmunización , Dióxido de Silicio/química , Vacunación , Vacunas/administración & dosificación
16.
Allergy Asthma Immunol Res ; 8(4): 312-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27126724

RESUMEN

PURPOSE: Several studies over the past 4 decades have indicated a significant reduction in house dust mite (HDM) and HDM allergen concentration in areas higher than 1,500 m above sea level. These have served as basis of allergen avoidance therapies for HDM allergy and asthma. However, modern construction techniques used in the insulation, heating, and glazing of buildings as well as global warming have changed the environmental parameters for HDM living conditions. The present study revisits the paradigm of decreasing HDM allergen concentrations with increasing altitude in the alpine region of Germany and Austria. METHODS: A total of 122 dust samples from different abodes (hotels, privates and mountain huts) at different altitudes (400-2,600 m) were taken, and concentrations of HDM allergens were analyzed. Humidity and temperature conditions, and numerous indoor environmental parameters such as fine dust, type of flooring, age of building, and frequency of cleaning were determined. RESULTS: HDM allergen concentrations did not significantly change with increasing altitude or relative humidity. At the level of indoor parameters, correlations could be found for different flooring types and the concentration of HDM allergens. CONCLUSIONS: In contrast to the widespread view of the relationship between altitude and HDM allergen concentrations, clinically relevant concentrations of HDM allergens could be detected in high-lying alpine regions in Austria and Germany. These results indicate that improvement in conditions of asthmatic patients sensitized against HDMs during a stay at high altitude can no longer be ascribed to decreased levels of HDM allergens, instead, other mechanisms may trigger the beneficial effect.

17.
J Allergy Clin Immunol ; 137(5): 1525-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26559323

RESUMEN

BACKGROUND: The search for intrinsic factors, which account for a protein's capability to act as an allergen, is ongoing. Fold stability has been identified as a molecular feature that affects processing and presentation, thereby influencing an antigen's immunologic properties. OBJECTIVE: We assessed how changes in fold stability modulate the immunogenicity and sensitization capacity of the major birch pollen allergen Bet v 1. METHODS: By exploiting an exhaustive virtual mutation screening, we generated mutants of the prototype allergen Bet v 1 with enhanced thermal and chemical stability and rigidity. Structural changes were analyzed by means of x-ray crystallography, nuclear magnetic resonance, and molecular dynamics simulations. Stability was monitored by using differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy. Endolysosomal degradation was simulated in vitro by using the microsomal fraction of JAWS II cells, followed by liquid chromatography coupled to mass spectrometry. Immunologic properties were characterized in vitro by using a human T-cell line specific for the immunodominant epitope of Bet v 1 and in vivo in an adjuvant-free BALB/c mouse model. RESULTS: Fold stabilization of Bet v 1 was pH dependent and resulted in resistance to endosomal degradation at a pH of 5 or greater, affecting presentation of the immunodominant T-cell epitope in vitro. These properties translated in vivo into a strong allergy-promoting TH2-type immune response. Efficient TH2 cell activation required both an increased stability at the pH of the early endosome and efficient degradation at lower pH in the late endosomal/lysosomal compartment. CONCLUSIONS: Our data indicate that differential pH-dependent fold stability along endosomal maturation is an essential protein-inherent determinant of allergenicity.


Asunto(s)
Alérgenos/química , Antígenos de Plantas/química , Alérgenos/genética , Alérgenos/inmunología , Animales , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Endosomas , Femenino , Concentración de Iones de Hidrógeno , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Mutación , Polen/inmunología , Pliegue de Proteína , Estabilidad Proteica
18.
PLoS One ; 10(6): e0128722, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030383

RESUMEN

The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.


Asunto(s)
Células Dendríticas/inmunología , Piel/inmunología , Vacunas de ADN/inmunología , Animales , Antígenos de Superficie/inmunología , Biolística/métodos , Pollos , Escherichia coli/inmunología , Inmunoglobulina G/inmunología , Células de Langerhans/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Linfocitos T Citotóxicos/inmunología , beta-Galactosidasa/inmunología
20.
J Allergy Clin Immunol ; 135(5): 1207-7.e1-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25441634

RESUMEN

BACKGROUND: Grass pollen is one of the most important sources of respiratory allergies worldwide. OBJECTIVE: This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. METHODS: Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. RESULTS: Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. CONCLUSION: A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy.


Asunto(s)
Proteínas Recombinantes de Fusión/inmunología , Rinitis Alérgica Estacional/prevención & control , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunología , Alérgenos/inmunología , Animales , Basófilos/inmunología , Basófilos/metabolismo , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Antígenos de Superficie de la Hepatitis B/química , Antígenos de Superficie de la Hepatitis B/genética , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Péptidos/inmunología , Poaceae , Polen/inmunología , Unión Proteica , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA