Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 15(1): 4673, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824124

RESUMEN

Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas , Inhibidor NF-kappaB alfa , Transducción de Señal , Tretinoina , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Tretinoina/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Desarrollo Embrionario/genética , Ratones Noqueados , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica , Femenino
2.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383534

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Asunto(s)
Células Madre Hematopoyéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Aorta/metabolismo , Arterias/metabolismo , Mesonefro , Gónadas/metabolismo
3.
Biochem Soc Trans ; 50(2): 703-712, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285494

RESUMEN

Haematopoietic stem and progenitor cells (HSPCs) sustain haematopoiesis by generating precise numbers of mature blood cells throughout the lifetime of an individual. In vertebrates, HSPCs arise during embryonic development from a specialised endothelial cell population, the haemogenic endothelium (HE). Signalling by the Transforming Growth Factor ß (TGFß) pathway is key to regulate haematopoiesis in the adult bone marrow, but evidence for a role in the formation of HSPCs has only recently started to emerge. In this review, we examine recent work in various model systems that demonstrate a key role for TGFß signalling in HSPC emergence from the HE. The current evidence underpins two seemingly contradictory views of TGFß function: as a negative regulator of HSPCs by limiting haematopoietic output from HE, and as a positive regulator, by programming the HE towards the haematopoietic fate. Understanding how to modulate the requirement for TGFß signalling in HSC emergence may have critical implications for the generation of these cells in vitro for therapeutic use.


Asunto(s)
Células Madre Hematopoyéticas , Factor de Crecimiento Transformador beta , Animales , Diferenciación Celular , Desarrollo Embrionario , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
4.
Cells ; 11(3)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159166

RESUMEN

The hematopoietic stem cell (HSC) sustains blood homeostasis throughout life in vertebrates. During embryonic development, HSCs emerge from the aorta-gonads and mesonephros (AGM) region along with hematopoietic progenitors within hematopoietic clusters which are found in the dorsal aorta, the main arterial vessel. Notch signaling, which is essential for arterial specification of the aorta, is also crucial in hematopoietic development and HSC activity. In this review, we will present and discuss the evidence that we have for Notch activity in hematopoietic cell fate specification and the crosstalk with the endothelial and arterial lineage. The core hematopoietic program is conserved across vertebrates and here we review studies conducted using different models of vertebrate hematopoiesis, including zebrafish, mouse and in vitro differentiated Embryonic stem cells. To fulfill the goal of engineering HSCs in vitro, we need to understand the molecular processes that modulate Notch signaling during HSC emergence in a temporal and spatial context. Here, we review relevant contributions from different model systems that are required to specify precursors of HSC and HSC activity through Notch interactions at different stages of development.


Asunto(s)
Mesonefro , Pez Cebra , Animales , Gónadas , Hematopoyesis , Células Madre Hematopoyéticas , Ratones
5.
Blood ; 139(3): 343-356, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34517413

RESUMEN

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Asunto(s)
Embrión de Mamíferos/embriología , Hemangioblastos/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mesonefro/citología , Mesonefro/embriología , Mesonefro/metabolismo , Ratones , Análisis de la Célula Individual , Transcriptoma , Pez Cebra
6.
Sci Adv ; 6(32): eabb2745, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32821835

RESUMEN

Adult hematopoietic stem cells (HSCs) are rare multipotent cells in bone marrow that are responsible for generating all blood cell types. HSCs are a heterogeneous group of cells with high plasticity, in part, conferred by epigenetic mechanisms. PHF19, a subunit of the Polycomb repressive complex 2 (PRC2), is preferentially expressed in mouse hematopoietic precursors. Here, we now show that, in stark contrast to results published for other PRC2 subunits, genetic depletion of Phf19 increases HSC identity and quiescence. While proliferation of HSCs is normally triggered by forced mobilization, defects in differentiation impede long-term correct blood production, eventually leading to aberrant hematopoiesis. At molecular level, PHF19 deletion triggers a redistribution of the histone repressive mark H3K27me3, which notably accumulates at blood lineage-specific genes. Our results provide novel insights into how epigenetic mechanisms determine HSC identity, control differentiation, and are key for proper hematopoiesis.

7.
EMBO J ; 39(8): e104270, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32149421

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium in cluster structures that protrude into the embryonic aortic lumen. Although much is known about the molecular characteristics of the developing hematopoietic cells, we lack a complete understanding of their origin and the three-dimensional organization of the niche. Here, we use advanced live imaging techniques of organotypic slice cultures, clonal analysis, and mathematical modeling to show the two-step process of intra-aortic hematopoietic cluster (IACH) formation. First, a hemogenic progenitor buds up from the endothelium and undergoes division forming the monoclonal core of the IAHC. Next, surrounding hemogenic cells are recruited into the IAHC, increasing their size and heterogeneity. We identified the Notch ligand Dll4 as a negative regulator of the recruitment phase of IAHC. Blocking of Dll4 promotes the entrance of new hemogenic Gfi1+ cells into the IAHC and increases the number of cells that acquire HSC activity. Mathematical modeling based on our data provides estimation of the cluster lifetime and the average recruitment time of hemogenic cells to the cluster under physiologic and Dll4-inhibited conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Aorta/embriología , Proteínas de Unión al Calcio/genética , División Celular , Células Progenitoras Endoteliales/fisiología , Femenino , Hemangioblastos/fisiología , Células Madre Hematopoyéticas/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos
8.
Nat Commun ; 9(1): 2517, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955049

RESUMEN

Haematopoietic stem cells (HSCs) are generated from haemogenic endothelial (HE) cells via the formation of intra-aortic haematopoietic clusters (IAHCs) in vertebrate embryos. The molecular events controlling endothelial specification, endothelial-to-haematopoietic transition (EHT) and IAHC formation, as it occurs in vivo inside the aorta, are still poorly understood. To gain insight in these processes, we performed single-cell RNA-sequencing of non-HE cells, HE cells, cells undergoing EHT, IAHC cells, and whole IAHCs isolated from mouse embryo aortas. Our analysis identified the genes and transcription factor networks activated during the endothelial-to-haematopoietic switch and IAHC cell maturation toward an HSC fate. Our study provides an unprecedented complete resource to study in depth HSC generation in vivo. It will pave the way for improving HSC production in vitro to address the growing need for tailor-made HSCs to treat patients with blood-related disorders.


Asunto(s)
Aorta/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Transcriptoma , Animales , Aorta/citología , Aorta/crecimiento & desarrollo , Diferenciación Celular , Embrión de Mamíferos , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Análisis de la Célula Individual
9.
Stem Cell Reports ; 10(4): 1369-1383, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29641990

RESUMEN

The first hematopoietic stem and progenitor cells are generated during development from hemogenic endothelium (HE) through trans-differentiation. The molecular mechanisms underlying this endothelial-to-hematopoietic transition (EHT) remain poorly understood. Here, we explored the role of the epigenetic regulators HDAC1 and HDAC2 in the emergence of these first blood cells in vitro and in vivo. Loss of either of these epigenetic silencers through conditional genetic deletion reduced hematopoietic transition from HE, while combined deletion was incompatible with blood generation. We investigated the molecular basis of HDAC1 and HDAC2 requirement and identified TGF-ß signaling as one of the pathways controlled by HDAC1 and HDAC2. Accordingly, we experimentally demonstrated that activation of this pathway in HE cells reinforces hematopoietic development. Altogether, our results establish that HDAC1 and HDAC2 modulate TGF-ß signaling and suggest that stimulation of this pathway in HE cells would be beneficial for production of hematopoietic cells for regenerative therapies.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Hematopoyesis , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Dioxoles/farmacología , Células Endoteliales/efectos de los fármacos , Eliminación de Gen , Hemangioblastos/citología , Hematopoyesis/efectos de los fármacos , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Transducción de Señal/efectos de los fármacos
10.
Blood ; 128(15): 1928-1939, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27554085

RESUMEN

Enhancers are the primary determinants of cell identity, and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9-kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8-kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the 6 genes that were upregulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene-coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.


Asunto(s)
Embrión de Mamíferos/metabolismo , Endoglina/metabolismo , Elementos de Facilitación Genéticos/fisiología , Hematopoyesis/fisiología , Sondas Moleculares/metabolismo , Animales , Línea Celular , Embrión de Mamíferos/citología , Endoglina/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Sondas Moleculares/genética , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo
11.
Dev Biol ; 417(1): 25-39, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27432513

RESUMEN

A transposon-mediated gene trap screen identified the zebrafish line qmc551 that expresses a GFP reporter in primitive erythrocytes and also in haemogenic endothelial cells, which give rise to haematopoietic stem and progenitor cells (HSPCs) that seed sites of larval and adult haematopoiesis. The transposon that mediates this GFP expression is located in intron 1 of the gfi1aa gene, one of three zebrafish paralogs that encode transcriptional repressors homologous to mammalian Gfi1 and Gfi1b proteins. In qmc551 transgenics, GFP expression is under the control of the endogenous gfi1aa promoter, recapitulates early gfi1aa expression and allows live observation of gfi1aa promoter activity. While the transposon integration interferes with the expression of gfi1aa mRNA in haematopoietic cells, homozygous qmc551 fish are viable and fertile, and display normal primitive and definitive haematopoiesis. Retained expression of Gfi1b in primitive erythrocytes and up-regulation of Gfi1ab at the onset of definitive haematopoiesis in homozygous qmc551 carriers, are sufficient to allow normal haematopoiesis. This finding contradicts previously published morpholino data that suggested an essential role for zebrafish Gfi1aa in primitive erythropoiesis.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/biosíntesis , Eritrocitos/citología , Eritropoyesis/genética , Células Madre Hematopoyéticas/citología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Proteínas de Unión al ADN/genética , Eritrocitos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/biosíntesis , Receptores Notch/genética , Receptores Notch/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
Cell Cycle ; 15(16): 2108-2114, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27399214

RESUMEN

The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hemangioblastos/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Biológicos
13.
Nat Cell Biol ; 18(1): 21-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619147

RESUMEN

In vertebrates, the first haematopoietic stem cells (HSCs) with multi-lineage and long-term repopulating potential arise in the AGM (aorta-gonad-mesonephros) region. These HSCs are generated from a rare and transient subset of endothelial cells, called haemogenic endothelium (HE), through an endothelial-to-haematopoietic transition (EHT). Here, we establish the absolute requirement of the transcriptional repressors GFI1 and GFI1B (growth factor independence 1 and 1B) in this unique trans-differentiation process. We first demonstrate that Gfi1 expression specifically defines the rare population of HE that generates emerging HSCs. We further establish that in the absence of GFI1 proteins, HSCs and haematopoietic progenitor cells are not produced in the AGM, revealing the critical requirement for GFI1 proteins in intra-embryonic EHT. Finally, we demonstrate that GFI1 proteins recruit the chromatin-modifying protein LSD1, a member of the CoREST repressive complex, to epigenetically silence the endothelial program in HE and allow the emergence of blood cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Histona Demetilasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Aorta/citología , Aorta/embriología , Diferenciación Celular/fisiología , Embrión de Mamíferos/citología , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Ratones
14.
Int J Dev Biol ; 53(4): 493-505, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19247960

RESUMEN

miRNAs are an important class of non-protein coding small RNAs whose specific functions in animals are rapidly being elucidated. It is clear that miRNAs can play crucial roles in stem cell maintenance, cell fate determination and differentiation. We use planarians, which possess a large population of pluripotent somatic stem cells, as a powerful model system to study many aspects of stem cell biology and regeneration. In particular we wish to investigate the regulatory role miRNAs may have in planarian stem cell self renewal, proliferation and differentiation. Here, we characterized the differential spatial patterns of expression of miRNAs in whole and regenerating planarians by in situ hybridization to nascent miRNA transcripts. These miRNA expression patterns are the first which have been determined for a Lophotrocozoan animal. We have characterized the expression patterns of 42 miRNAs in adult planarians, constituting a complete range of tissue specific expression patterns. We also followed miRNA expression during planarian regeneration. The majority of planarian miRNAs were expressed either in areas where stem cells (neoblasts) are located and/or in the nervous system. Some miRNAs were definitively expressed in stem cells and dividing cells as confirmed by in situ hybridisation after irradiation. We also found miRNAs to be expressed in germ stem cells of the sexual strain. Together, these data suggest an important role for miRNAs in stem cell regulation and in neural cell differentiation in planarians.


Asunto(s)
Regulación de la Expresión Génica/genética , Homeostasis/genética , MicroARNs/genética , Planarias/genética , Regeneración/genética , Envejecimiento/fisiología , Animales , Forma del Núcleo Celular/genética , Femenino , Masculino , Maduración Sexual , Células Madre/metabolismo , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA