Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Arch Toxicol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713375

RESUMEN

Rifampicin is a strong inducer of cytochrome P450 (CYP3A4) and P-glycoprotein (P-gp/ABCB1), leading to profound drug-drug interactions. In contrast, the chemically related rifabutin does not show such pronounced induction properties in vivo. The aim of our study was to conduct a comprehensive analysis of the different induction potentials of rifampicin and rifabutin in primary human hepatocytes and to analyze the mechanism of potential differences. Therefore, we evaluated CYP3A4/ABCB1 mRNA expression (polymerase chain reaction), CYP3A4/P-gp protein expression (immunoaffinity-liquid chromatography-mass spectrometry, IA-LC-MS/MS), CYP3A4 activity (testosterone hydroxylation), and considered intracellular drug uptake after treatment with increasing rifamycin concentrations (0.01-10 µM). Furthermore, rifamycin effects on the protein levels of CYP2C8, CYP2C9, and CYP2C19 were analyzed (IA-LC-MS/MS). Mechanistic analysis included the evaluation of possible suicide CYP3A4 inhibition (IC50 shift assay) and drug impact on translational efficiency (cell-free luminescence assays). Rifabutin accumulated 6- to 15-fold higher in hepatocytes than rifampicin, but induced CYP3A4 mRNA comparably to rifampicin (e. g. rifampicin 61-fold vs. rifabutin 44-fold, 72 h). While rifampicin for example enhanced protein (10 µM: 21-fold) and activity levels considerably (53-fold), rifabutin only slightly increased CYP3A4 protein expression (10 µM: 3.3-fold) or activity (11-fold) compared to rifampicin after 72 h. Both rifamycins similarly influenced expression of other eliminating proteins. A potential CYP3A4 suicide inhibition by a specific rifabutin metabolite or disruption of ribosome function were excluded experimentally. In conclusion, the lack of protein enhancement, could explain rifabutin's weaker induction-related drug-drug interaction risk in vivo.

2.
Biomed Pharmacother ; 173: 116450, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503239

RESUMEN

Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.


Asunto(s)
Cisplatino , Neoplasias , Animales , Cisplatino/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/farmacología , Apoptosis , Línea Celular Tumoral , ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2485-2496, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37851058

RESUMEN

Rifampicin and rifabutin can activate the pregnane X receptor (PXR, NR1I2), thereby inducing pharmacokinetically important genes/proteins and reducing exposure to co-administered drugs. Because induction effects vary considerably between these antibiotics, differences could be due to unequal rifamycin-induced activation or tissue expression of the three major NR1I2 splice variants, PXR.1 (NM_003889), PXR.2 (NM_022002), and PXR.3 (NM_033013). Consequently, PXR activation (PXR reporter gene assays) and mRNA expression levels of total NR1I2, PXR.1, PXR.2, and PXR.3 were investigated by polymerase chain reaction in colon and liver samples from eleven surgical patients, in LS180 cells, and primary human hepatocytes. Compared to the colon, total NR1I2 mRNA expression was higher in the liver. Both tissues showed similar expression levels of PXR.1 and PXR.3, respectively. PXR.2 was not quantifiable in the colon samples. Rifampicin and rifabutin similarly enhanced PXR.1 and PXR.2 activity when transfected into LS180 cells, while PXR.3 could not be activated. In LS180 cells, rifampicin (10 µM) reduced total NR1I2 and PXR.3 expression 2-fold after 24 h, while rifabutin (10 µM) increased total NR1I2, PXR.1, PXR.2, and PXR.3 mRNA by approx. 50% after 96-h exposure. In primary human hepatocytes, rifampicin (10 µM) suppressed total NR1I2, PXR.1, and PXR.3 after 48-h exposure, and rifabutin (10 µM) had no significant impact on total NR1I2 or any of the splice variants studied. In conclusion, both antibiotics activated the studied PXR splice variants similarly but modified their expression differently. While rifampicin can suppress mRNA of PXR forms, rifabutin rather increases their expression levels.


Asunto(s)
Receptores de Esteroides , Rifampin , Humanos , Receptor X de Pregnano , Rifampin/farmacología , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifabutina , Antibacterianos , ARN Mensajero , Citocromo P-450 CYP3A
4.
Arch Toxicol ; 98(1): 223-231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37833491

RESUMEN

Physiology-based pharmacokinetic modeling suggests that rifabutin can out-balance P-glycoprotein (P-gp) induction by concurrent P-gp inhibition. However, clinical or experimental evidence for this Janus-faced rifabutin effect is missing. Consequently, LS180 cells were exposed to a moderately (2 µM) and strongly (10 µM) P-gp-inducing concentration of rifampicin or rifabutin for 6 days. Cellular accumulation of the fluorescent P-gp substrate rhodamine 123 was evaluated using flow cytometry, either without (induction only) or with adding rifamycin drug to the cells during the rhodamine 123 efflux phase (induction + potential inhibition). Rhodamine 123 accumulation was decreased similarly by both drugs after 6-day exposure (2 µM: 55% residual fluorescence compared to non-induced cells, P < 0.01; 10 µM: 30% residual fluorescence compared to non-induced cells, P < 0.001), indicating P-gp induction. Rhodamine 123 influx transporters mRNA expressions were not affected, excluding off-target effects. Acute re-exposure to rifabutin, however, considerably re-increased rhodamine 123 accumulation (2 µM induction: re-increase by 55%, P < 0.01; 10 µM induction: 49% re-increase, P < 0.001), suggesting P-gp inhibition. In contrast, rifampicin only had weak effects (2 µM induction: no re-increase; 10 µM induction: 16% re-increase; P < 0.05). Molecular docking analysis eventually revealed that rifabutin has a higher binding affinity to the inhibitor binding site of P-gp than rifampicin (ΔG (kcal/mol) = -11.5 vs -5.3). Together, this study demonstrates that rifabutin can at least partly mask P-gp induction by P-gp inhibition, mediated by high affinity binding to the inhibitory site of P-gp.


Asunto(s)
Rifabutina , Rifampin , Rifampin/farmacología , Rifabutina/farmacología , Rodamina 123/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Simulación del Acoplamiento Molecular
5.
Nat Cancer ; 4(9): 1362-1381, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37679568

RESUMEN

Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.


Asunto(s)
Adenocarcinoma , Terapia Neoadyuvante , Humanos , Citocromo P-450 CYP3A , Adyuvantes Inmunológicos , Queratina-17 , Fenotipo
6.
ACS Omega ; 8(26): 23695-23705, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426236

RESUMEN

Quantitative monitoring of biologically active methylations of guanines in samples exposed to temozolomide (TMZ) would be useful in glioblastoma research for preclinical TMZ experiments, for clinical pharmacology questions regarding appropriate exposure, and ultimately for precision oncology. The known biologically active alkylation of DNA induced by TMZ takes place on O6 position of guanines. However, when developing mass spectrometric (MS) assays, the possible signal overlap of O6-methyl-2'-deoxyguanosine (O6-m2dGO) with other methylated 2'-deoxyguanosine species in DNA and methylated guanosines in RNA must be considered. Liquid chromatography-tandem MS (LC-MS/MS) offers the analytical requirements for such assays in terms of specificity and sensitivity, especially when multiple reaction monitoring (MRM) is available. In preclinical research, cancer cell lines are still the gold standard model for in vitro drug screening. Here, we present the development of ultra-performance LC-MRM-MS assays for the quantification of O6-m2dGO in a TMZ-treated glioblastoma cell line. Furthermore, we propose adapted parameters for method validation relevant to the quantification of drug-induced DNA modifications.

7.
Arch Toxicol ; 97(8): 2219-2230, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37285043

RESUMEN

Compared to rifampicin (600 mg/day), standard doses of rifabutin (300 mg/day) have a lower risk of drug-drug interactions due to induction of cytochrome P450 3A4 (CYP3A4) or P-glycoprotein (Pgp/ABCB1) mediated by the pregnane X receptor (PXR). However, clinical comparisons with equal rifamycin doses or in vitro experiments respecting actual intracellular concentrations are lacking. Thus, the genuine pharmacological differences and the potential molecular mechanisms of the discordant perpetrator effects are unknown. Consequently, the cellular uptake kinetics (mass spectrometry), PXR activation (luciferase reporter gene assays), and impact on CYP3A4 and Pgp/ABCB1 expression and activity (polymerase chain reaction, enzymatic assays, flow cytometry) were evaluated in LS180 cells after treatment with different rifampicin or rifabutin concentrations for variable exposure times and eventually normalized to actual intracellular concentrations. In addition, inhibitory effects on CYP3A4 and Pgp activities were investigated. While rifampicin is poorly taken up by LS180 cells, it strongly activates PXR and leads to enhanced expression and activity of CYP3A4 and Pgp. In contrast, rifabutin is a significantly less potent and less efficient PXR activator and gene inducer, despite sixfold to eightfold higher intracellular accumulation. Finally, rifabutin is a potent inhibitor of Pgp (IC50 = 0.3 µM) compared to rifampicin (IC50 = 12.9 µM). Together, rifampicin and rifabutin significantly differ by their effects on the regulation and function of CYP3A4 and Pgp, even when controlled for intracellular concentrations. Rifabutin's concurrent Pgp inhibitory action might partly compensate the inducing effects, explaining its weaker clinical perpetrator characteristics.


Asunto(s)
Receptores de Esteroides , Rifampin , Rifampin/farmacología , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Rifabutina/toxicidad , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Interacciones Farmacológicas
9.
Int J Cancer ; 153(2): 252-264, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36408912

RESUMEN

Monoclonal antibodies (mAbs) acting as immune checkpoint inhibitors (ICIs) are among the most frequently used immunotherapies in oncology. However, precision medicine approaches to adapt the treatment to the patient are still poorly exploited. Given the risk of severe adverse reactions, predicting patient eligibility for ICI therapy represents a great asset for precision medicine. Today, the extended panel of mass spectrometric approaches, accompanied by newly developed sample preparation methods is a strategy of choice for responder and non-responder stratification on a molecular basis, and early detection of resistance. In this perspective article, we review the biodisposition of mAbs, the interest in molecular stratification of patients treated with these mAbs, and the possible analytical strategies to achieve this goal, with a major emphasis on mass spectrometric approaches.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Medicina de Precisión , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia/métodos , Antígeno B7-H1
10.
Biotechniques ; 73(3): 131-135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36000337

RESUMEN

Experimental data with cells often require normalization. The frequently used bicinchoninic acid (BCA) assay, in fact, indicates protein content but is influenced by incubation time, pH etc. A simple, rapid and reliable alternative is desirable. Crystal violet stains nucleic acids and proteins and was used to reflect the cell number in 96-well plates. Calibration curves and comparison with BCA confirmed excellent goodness of fit (R2: 0.98), conformity (nonsignificant difference of BCA to crystal violet) and reliability of this staining methodology. Crystal violet staining can be used to normalize experimental data to the number of adherent cells present in cell culture plates.


Asunto(s)
Violeta de Genciana , Ácidos Nucleicos , Proteínas , Quinolinas , Reproducibilidad de los Resultados , Coloración y Etiquetado
11.
Arch Toxicol ; 96(9): 2501-2510, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678845

RESUMEN

The activity of nuclear receptors (e.g., pregnane x receptor, PXR) can be assessed by luminescence-based dual reporter gene assays. Under most conditions, receptor-activated firefly luminescence is normalized to Renilla luminescence, which is triggered by a constitutively active promoter. Simultaneous damage to the cells can however disrupt these signals and thus impair the interpretation of the data. Consequently, this study addressed three important aspects: First, idealized models were described, each highlighting crucial characteristics and important pitfalls of dual PXR reporter gene assays used to evaluate PXR activation or inhibition. Second, these models were supported by experimental data obtained with a strong PXR activator (rifampicin) with low cytotoxicity, a PXR activator with high cytotoxicity (dovitinib), a proposed PXR inhibitor that reportedly has no toxic effects (triptolide), and a cytotoxic control (oxaliplatin). Data were evaluated for relative PXR activity data, individual firefly or Renilla luminescence, and anti-proliferative effects of the compounds (assessed by crystal violet staining). Finally, a step-by-step guide is proposed to avoid misleading set-up of the assay or misinterpretation of the data obtained. Key considerations here include (1) omission of drug concentrations beyond 10-20% proliferation inhibition; (2) observation of Renilla luminescence, because this tends to indicate 'false PXR activation' when it inexplicably decreases; (3) parallel decrease of relative PXR activity and proliferation below baseline levels in conjunction with a sharp decrease in Renilla luminescence indicates 'false PXR antagonism'; (4) non-sigmoidal relationships suggest the absence of concentration dependency.


Asunto(s)
Receptores de Esteroides , Citocromo P-450 CYP3A/genética , Genes Reporteros , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Esteroides/genética , Rifampin/farmacología
12.
Cells ; 10(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34831358

RESUMEN

The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Enfermedad , Salud , Humanos , Ligandos , Unión Proteica , Transcripción Genética
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(8): 1621-1632, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236499

RESUMEN

Acquired multidrug resistance (MDR) in tumor diseases has repeatedly been associated with overexpression of ATP-binding cassette transporters (ABC-transporters) such as P-glycoprotein. Both in vitro and in vivo data suggest that these efflux transporters can cause MDR, albeit its actual relevance for clinical chemotherapy unresponsiveness remains uncertain. The overexpression can experimentally be achieved by exposure of tumor cells to cytotoxic drugs. For simplification, the drug-mediated transporter overexpression can be attributed to two opposite mechanisms: First, increased transcription of ABC-transporter genes mediated by nuclear receptors sensing the respective compound. Second, Darwinian selection of sub-clones intrinsically overexpressing drug transporters being capable of extruding the respective drug. To date, there is no definite data indicating which mechanism truly applies or whether there are circumstances promoting either mode of action. This review summarizes experimental evidence for both theories, suggests an algorithm discriminating between these two modes, and finally points out future experimental approaches of research to answer this basic question in cancer pharmacology.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/genética
14.
Pharmaceutics ; 13(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071580

RESUMEN

Interferon-alpha (IFN-α) is suggested to cause pharmacokinetic drug interactions by lowering expression of drug disposition genes through affecting the activities of nuclear factor kappa B (NF-ĸB) and pregnane X receptor (PXR). The time-resolved impact of IFN-α 2a (1000 U/mL; 5000 U/mL; 2 h to 30 h) on the activities of NF-ĸB and PXR and mRNA expression (5000 U/mL; 24 h, 48 h) of selected drug disposition genes and on cytochrome P450 (CYP3A4) activity in LS180 cells (5000 U/mL; 24 h, 48 h) was evaluated using luciferase-based reporter gene assays, reverse transcription polymerase chain reaction, and luminescence-based CYP3A4 activity assays. The cross-talk between NF-ĸB activation and PXR suppression was evaluated by NF-ĸB blockage (10 µM parthenolide). IFN-α 2a initially (2 h, 6 h) enhanced NF-ĸB activity 2-fold and suppressed PXR activity by 30%. mRNA of CYP3A4 was halved, whereas UGT1A1 was increased (1.35-fold) after 24 h. After 48 h, ABCB1 expression was increased (1.76-fold). CYP3A4 activity remained unchanged after 24 h, but was enhanced after 48 h (1.35-fold). IFN-α 2a demonstrated short-term suppressive effects on PXR activity and CYP3A4 mRNA expression, likely mediated by activated NF-ĸB. Longer exposure enhanced CYP3A4 activity. Clinical trials should evaluate the relevance by investigating the temporal effects of IFN-α on CYP3A4 using a sensitive marker substrate.

15.
Eur J Pharm Sci ; 162: 105826, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813039

RESUMEN

Resiquimod (R-848) is an immune response modifier activating toll-like receptor 7 and 8. Its potential to cause pharmacokinetic interactions with concurrently administered drugs is unknown. To study the time course of the effect of resiquimod in LS180 cells as a model for intestinal tissue, luciferase-based reporter gene assays and reverse transcription polymerase chain reaction were used to investigate whether resiquimod affects the activities of nuclear factor kappa B (NF-ĸB), pregnane x receptor (PXR) or the transcription of selected central genes for drug disposition (cytochrome P-450 isozyme 3A4 (CYP3A4), CYP1A1, UDP-glucuronosyltransferase 1A1 (UGT1A1), ATP-binding cassette transporters ABCC2, ABCB1). Its impact on the activities of organic anion transporting polypeptides 1 or 3 (OATP1B1/3), breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) or CYP3A4 was evaluated using fluorescence- or luminescence-based activity assays. Resiquimod irrelevantly increased NF-ĸB activity after 2 h (1 µM: 1.07-fold, P = 0.0188; 10 µM: 1.09-fold, P = 0.0142), and diminished it after 24 h (1 µM: 0.64-fold, P < 0.0001; 10 µM: 0.68-fold, P < 0.0001) and 30 h (10 µM: 0.68-fold, P = 0.0003). Concurrently, PXR activity after 24 h was marginally increased by 10 µM (1.05-fold, P = 0.0019). Resiquimod did not alter mRNA expression levels, activities of uptake or efflux transporters, or CYP3A4 activity. Given the marginal effects on NF-ĸB, PXR, expression levels of selected PXR target genes, and activities of important drug transporters and CYP3A4 in vitro, resiquimod is not expected to cause major pharmacokinetic drug-drug interactions in vivo.


Asunto(s)
Imidazoles/farmacología , Receptores de Esteroides , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Proteínas de Neoplasias , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
16.
Cytokine ; 138: 155399, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33338916

RESUMEN

BACKGROUND: The overall clinical outcome of inflammatory conditions is the result of the balance between pro-inflammatory and anti-inflammatory mediators. Because nuclear factor kappa B (NF-ĸB) is at the bottom of many inflammatory conditions, methods to evaluate the net effect of inflammation modulators on this master regulator have been conceptualized for years. METHODS: Using an ex vivo NF-ĸB reporter cell line-based assay, plasma samples of patients with rheumatoid arthritis (n = 27), psoriasis (n = 15), or severe coronavirus disease-19 (COVID-19) (n = 21) were investigated for NF-ĸB activation compared to plasma samples from 9 healthy volunteers. RESULTS: When separated by C-reactive protein (CRP) threshold levels, samples of patients exhibiting increased CRP levels (≥5 mg/l) activated NF-ĸB more efficiently than samples from patients with levels below 5 mg/l (P = 0.0001) or healthy controls (P = 0.04). Overall, there was a moderate association of CRP levels with NF-ĸB activation (Spearman r = 0.66; p < 0.0001). Plasma from COVID-19 patients activated NF-ĸB more efficiently (mean 2.4-fold compared to untreated reporter cells) than samples from any other condition (healthy controls, 1.8-fold, P = 0.0025; rheumatoid arthritis, 1.7-fold, P < 0.0001; psoriasis, 1.7-fold, P < 0.0001). In contrast, effects of rheumatoid arthritis, psoriasis, or healthy volunteer samples did not differ. CONCLUSION: This study shows that a NF-ĸB reporter cell line can be used to evaluate the net inflammatory effect of clinical plasma samples. Patients with chronic but stable rheumatoid arthritis or psoriasis do not exhibit increased plasma levels of NF-ĸB-activating compounds as opposed to COVID-19 patients with high inflammatory burden.


Asunto(s)
Artritis Reumatoide/patología , COVID-19/patología , FN-kappa B/sangre , FN-kappa B/metabolismo , Psoriasis/patología , Artritis Reumatoide/sangre , Proteína C-Reactiva/análisis , Línea Celular , Activación Enzimática/fisiología , Femenino , Células HEK293 , Humanos , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Psoriasis/sangre , SARS-CoV-2/inmunología
17.
Br J Clin Pharmacol ; 87(3): 858-874, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32881012

RESUMEN

Clinical pharmacology is an important discipline for drug development aiming to define pharmacokinetics (PK), pharmacodynamics (PD) and optimum exposure to drugs, i.e. the concentration-response relationship and its modulators. For this purpose, information on drug concentrations at the anatomical, cellular and molecular sites of action is particularly valuable. In pharmacological assays, the limited accessibility of target cells in readily available samples (i.e. blood) often hampers mass spectrometry-based monitoring of the absolute quantity of a compound and the determination of its molecular action at the cellular level. Recently, new sample collection methods have been developed for the specific capture of rare circulating cells, especially for the diagnosis of circulating tumour cells. In parallel, new advances and developments in mass spectrometric instrumentation now allow analyses to be scaled down to the cellular level. Together, these developments may permit the monitoring of minute drug quantities and show their effect at the cellular level. In turn, such PK/PD associations on a cellular level would not only enrich our pharmacological knowledge of a given compound but also expand the basis for PK/PD simulations. In this review, we describe novel concepts supporting clinical pharmacology at the anatomical, cellular and molecular sites of action, and highlight the new challenges in mass spectrometry-based monitoring. Moreover, we present methods to tackle these challenges and define future needs.


Asunto(s)
Preparaciones Farmacéuticas , Farmacología Clínica , Farmacología , Modelos Biológicos , Farmacocinética
18.
Biomedicines ; 10(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052681

RESUMEN

Temozolomide (TMZ), together with bulk resection and focal radiotherapy, is currently a standard of care for glioblastoma. Absorption, distribution, metabolism, and excretion (ADME) parameters, together with the mode of action of TMZ, make its biochemical and biological action difficult to understand. Accurate understanding of the mode of action of TMZ and the monitoring of TMZ at its anatomical, cellular, and molecular sites of action (SOAs) would greatly benefit precision medicine and the development of novel therapeutic approaches in combination with TMZ. In the present perspective article, we summarize the known ADME parameters and modes of action of TMZ, and we review the possible methodological options to monitor TMZ at its SOAs. We focus our descriptions of methodologies on mass spectrometry-based approaches, and all related considerations are taken into account regarding the avoidance of artifacts in mass spectrometric analysis during sampling, sample preparation, and the evaluation of results. Finally, we provide an overview of potential applications for precision medicine and drug development.

19.
Anal Biochem ; 596: 113646, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32112722

RESUMEN

Quantification of therapeutic antibodies is commonly based on physico-chemical assays such as enzyme-linked immunoabsorption assays (ELISA) and lately on mass spectrometry. However, the functional integrity of evaluated immunoglobulins is yet not assessed. Consequently, a commercially available reporter cell line was used to quantify the functional concentration of the anti-tumor necrosis factor alpha (TNF-α) antibody adalimumab present in serum of a healthy beagle dog treated with 3 mg intravenous adalimumab (Humira®). HEK-Blue™-hTLR3 cells express a secreted alkaline phosphatase under the control of a nuclear factor kappa B (NF-κB) response element. Its enzymatic activity can be recorded using colorimetry, which reports activity of extracellular NF-κB stimuli such as TNF-α. Using an adalimumab concentration-response calibration curve, the functional concentration of serum adalimumab was estimated to be 4.9 ± 1.4 µg/ml, which was in excellent agreement with ELISA results (4.8 µg/ml). The obtained data suggest that this simple, easy-to-handle reporter cell assay can be used for the functional quantification of adalimumab present in samples from in vitro or pre-clinical in vivo experiments. Moreover, this assay could be used in vitro to compare the pharmacodynamics of adalimumab biosimilars or different anti-TNF-α compounds, respectively.


Asunto(s)
Adalimumab/sangre , Adalimumab/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adalimumab/administración & dosificación , Administración Intravenosa , Animales , Células Cultivadas , Perros , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA