Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
bioRxiv ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39386637

RESUMEN

Background: A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims: We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method: We leveraged person-specific atlases of functional brain networks defined using non-negative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results: Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions: Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.

2.
medRxiv ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39399003

RESUMEN

Importance: Functional brain networks are associated with both behavior and genetic factors. To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective: To determine the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design: The Adolescent Brain Cognitive Development (ABCD) Study⍰ is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting: The ABCD Study ® is a multi-site community-based study. Participants: The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures: Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures: (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results: Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable ( N =7,459, 57.06% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor ( N =5,815, r =0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor ( N =7,459, mean r =0.12), PRS-F1 ( N =3,982, mean r =0.05), and PRS-F2 ( N =3,982, mean r =0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated ( r =0.7, p =0.003). Conclusions and Relevance: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology. Key Points: Question: What is the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence?Findings: In this cross-sectional analysis of the Adolescent Brain Cognitive Development (ABCD) Study⍰ ( N =11,873, ages 9-10), we found that a PRS of common psychopathology in adulthood (PRS-F1) was associated with p-factor during early adolescence. Interindividual differences in p-factor, PRS-F1, and PRS-F2 (capturing rarer psychopathology in adulthood) were all robustly associated with PFN topography. Meaning: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and PFN topography during early adolescence.

3.
Nat Ment Health ; 2(3): 287-298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39219688

RESUMEN

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by social and communication deficits (SCDs), restricted and repetitive behaviors (RRBs) and fixated interests. Despite its prevalence, development of effective therapy for ASD is hindered by its symptomatic and neurophysiological heterogeneities. To comprehensively explore these heterogeneities, we developed a new analytical framework combining contrastive learning and sparse canonical correlation analysis that identifies symptom-linked resting-state electroencephalographic connectivity dimensions within 392 ASD samples. We present two dimensions with multivariate connectivity basis exhibiting significant correlations with SCD and RRB, confirm their robustness through cross-validation and demonstrate their conceptual generalizability using an independent dataset (n = 222). Specifically, the right inferior parietal lobe is the core region for RRB, while connectivity between the left angular gyrus and the right middle temporal gyrus show key contribution to SCD. These findings provide a promising avenue to parse ASD heterogeneity with high clinical translatability, paving the way for ASD treatment development and precision medicine.

4.
J Surg Case Rep ; 2024(9): rjae578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267908

RESUMEN

Factor VIII deficiency, also known as hemophilia A, is the most common inherited bleeding disorder. Deficiency of Factor VIII results in dysfunction of platelet aggregation due to decreased activation of Factor X to Xa. We present the case of a 68-year-old male with mild hemophilia A (Factor VIII activity, 16%) who underwent a three-vessel coronary artery bypass graft and patent foramen ovale repair, with no increased bleeding utilizing a recombinant Factor VIII (kogenate) preoperative bolus and continuous infusion. His postoperative course was complicated by a sternal wound dehiscence requiring washout, sternal wire removal and omental flap coverage on postoperative Day 21. However, he required no postoperative blood transfusions.

5.
Nat Rev Neurosci ; 25(10): 688-704, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103609

RESUMEN

Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Encéfalo/fisiología , Red Nerviosa/fisiología , Cognición/fisiología , Conectoma/métodos , Relación Estructura-Actividad , Vías Nerviosas/fisiología , Sustancia Blanca/fisiología , Sustancia Blanca/anatomía & histología , Mapeo Encefálico
6.
Maturitas ; 188: 108088, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128262

RESUMEN

OBJECTIVES: To explore whether the association between physical activity (PA) and cognition is moderated by neighbourhood disadvantage, and whether this relationship varies with age. STUDY DESIGN: A longitudinal analysis of the Canadian Longitudinal Study on Aging, wherein we included participants (N = 41,599) from urban areas who did not change their residential postal code from baseline (2010-2015) to first follow-up (2015-2018). MAIN OUTCOME MEASURES: At baseline, we measured PA using the Physical Activity Scale for the Elderly, and neighbourhood disadvantage using the Material and Social Deprivation Indices. RESULTS: Using latent change score regression models, we determined that higher PA at baseline was independently associated with greater maintenance in memory performance from baseline to first follow-up both for adults aged 45-64 (B = 0.04, SE = 0.01, p = 0.001) and for those aged 65+ years (B = 0.12, SE = 0.02, p < 0.001). For participants aged 45-64 years, greater material deprivation was independently associated with declines in memory performance (B = -0.10, SE = 0.03, p < 0.001). In addition, greater social deprivation was associated with a stronger effect of PA on changes in executive functions (B = 0.17, SE = 0.08, p = 0.025) for adults aged 45-64 years; greater material deprivation was associated with a stronger effect of PA on changes in memory performance (B = 0.07, SE = 0.03, p = 0.022). We failed to detect any interactions between PA and neighbourhood disadvantage among adults aged 65+ years (all p values >0.05). CONCLUSION: For middle-aged adults, the benefits of PA on cognitive performance may be strongest among adults living with greater neighbourhood social and material disadvantages. For older adults, PA may be beneficial to cognitive performance irrespective of neighbourhood disadvantages.


Asunto(s)
Envejecimiento , Cognición , Ejercicio Físico , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Anciano , Canadá , Masculino , Femenino , Envejecimiento/fisiología , Características del Vecindario , Características de la Residencia , Memoria , Factores de Edad , Función Ejecutiva , Factores Socioeconómicos
7.
Biostatistics ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39140988

RESUMEN

In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.

8.
Proc Natl Acad Sci U S A ; 121(33): e2314074121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39121162

RESUMEN

Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.


Asunto(s)
Imagen por Resonancia Magnética , Neocórtex , Humanos , Adolescente , Femenino , Masculino , Neocórtex/diagnóstico por imagen , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Desarrollo del Adolescente/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología
9.
J Antimicrob Chemother ; 79(10): 2570-2574, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092932

RESUMEN

OBJECTIVES: To develop a pragmatic twice daily lamivudine dosing strategy for preterm infants from 24 to 37 completed weeks of gestation. METHODS: Data were combined from eight pharmacokinetic studies in neonates and infants receiving lamivudine oral solution. A population pharmacokinetic model was developed using non-linear mixed effects regression. Different lamivudine dosing strategies, stratified by gestational age at birth (GA) bands, were simulated in a virtual population of preterm infants, aimed at maintaining lamivudine drug exposures (AUC0-12) within a reference target range of 2.95 to 13.25 µg·h/mL, prior to switching to WHO-weight band doses when ≥4 weeks of age and weighing ≥3 kg. RESULTS: A total of 154 infants (59% female) contributed 858 lamivudine plasma concentrations. Median (range) GA at birth was 38 (27-41) weeks. At the time of first pharmacokinetic sampling infants were older with median postnatal age (PNA) of 6.3 (0.52-26.6) weeks. Lamivudine concentrations were described by a one-compartment model, with CL/F and V/F allometrically scaled to weight. Maturation of CL/F was described using an Emax model based on PNA. CL/F was also adjusted on GA to allow extrapolation for extreme prematurity. Simulations predicted an optimal lamivudine dosing for infants GA ≥24 to <30 weeks of 2 mg/kg twice daily from birth until weighing 3 kg; and for GA ≥30 to <37 weeks, 2 mg/kg twice daily for the first 4 weeks of life, followed by 4 mg/kg twice daily until weighing 3 kg. CONCLUSIONS: Model-based predictions support twice daily pragmatic GA band dosing of lamivudine for preterm infants, but clinical validation is warranted.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Recien Nacido Prematuro , Lamivudine , Humanos , Lamivudine/farmacocinética , Lamivudine/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , Femenino , Recién Nacido , Fármacos Anti-VIH/farmacocinética , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Masculino , Lactante , Edad Gestacional , Simulación por Computador
11.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979274

RESUMEN

Within-individual coupling between measures of brain structure and function evolves in development and may underlie differential risk for neuropsychiatric disorders. Despite increasing interest in the development of structure-function relationships, rigorous methods to quantify and test individual differences in coupling remain nascent. In this article, we explore and address gaps in approaches for testing and spatially localizing individual differences in intermodal coupling. We propose a new method, called CIDeR, which is designed to simultaneously perform hypothesis testing in a way that limits false positive results and improve detection of true positive results. Through a comparison across different approaches to testing individual differences in intermodal coupling, we delineate subtle differences in the hypotheses they test, which may ultimately lead researchers to arrive at different results. Finally, we illustrate the utility of CIDeR in two applications to brain development using data from the Philadelphia Neurodevelopmental Cohort.

12.
Nat Protoc ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075309

RESUMEN

Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.

14.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878300

RESUMEN

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Asunto(s)
Encéfalo , Fenotipo , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Estudios de Cohortes , Femenino , Masculino
15.
Proc Natl Acad Sci U S A ; 121(25): e2219137121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861593

RESUMEN

Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.


Asunto(s)
Encéfalo , Humanos , Encéfalo/metabolismo , Animales , Adulto , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Tipificación del Cuerpo/genética , Femenino , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética
16.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915591

RESUMEN

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

17.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746228

RESUMEN

Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.

19.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814872

RESUMEN

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Asunto(s)
Corteza Cerebral , Cognición , Imagen por Resonancia Magnética , Humanos , Cognición/fisiología , Cognición/efectos de los fármacos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Adolescente , Niño , Conectoma/métodos , Alprazolam/farmacología , Receptores de GABA-A/metabolismo , Adulto Joven
20.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664387

RESUMEN

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Corteza Sensoriomotora , Humanos , Adolescente , Femenino , Masculino , Adulto Joven , Niño , Corteza Sensoriomotora/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Preescolar , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA