Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell Mol Life Sci ; 80(9): 266, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624561

RESUMEN

The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Femenino , Animales , Proteínas Hedgehog/genética , Membrana Celular , Drosophila , Vías Secretoras , Mamíferos
2.
Matrix Biol ; 114: 35-66, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343860

RESUMEN

All epithelia have their basal side in contact with a specialized extracellular matrix, the basement membrane (BM). During development, the BM contributes to the shaping of epithelial organs via its mechanical properties. These properties rely on two core components of the BM, collagen type IV and perlecan/HSPG2, which both interact with another core component, laminin, the initiator of BM assembly. While collagen type IV supplies the BM with rigidity to constrain the tissue, perlecan antagonizes this effect. Nevertheless, the number of organs that has been studied is still scarce, and given that epithelial tissues exhibit a wide array of shapes, their forms are bound to be regulated by distinct mechanisms. This is underscored by mounting evidence that BM composition and assembly/biogenesis is tissue-specific. Moreover, previous reports have essentially focused on the mechanical role of the BM in morphogenesis at the tissue scale, but not the cell scale. Here, we took advantage of the robust conservation of core BM proteins and the limited genetic redundancy of the Drosophila model system to address how this matrix shapes the wing imaginal disc, a complex organ comprising a squamous, a cuboidal and a columnar epithelium. With the use of a hypomorphic allele, we show that the depletion of Trol (Drosophila perlecan) affects the morphogenesis of the three epithelia, but particularly that of the squamous one. The planar surface of the squamous epithelium (SE) becomes extremely narrow, due to a function for Trol in the control of the squamous shape of its cells. Furthermore, we find that the lack of Trol impairs the biogenesis of the BM of the SE by modifying the structure of the collagen type IV lattice. Through atomic force microscopy and laser surgery, we demonstrate that Trol provides elasticity to the SE's BM, thereby regulating the mechanical properties of the SE. Moreover, we show that Trol acts via collagen type IV, since the global reduction in the trol mutant context of collagen type IV or the enzyme that cross-links its 7S -but not the enzyme that cross-links its NC1- domain substantially restores the morphogenesis of the SE. In addition, a stronger decrease in collagen type IV achieved by the overexpression of the matrix metalloprotease 2 exclusively in the BM of the SE, significantly rescues the organization of the two other epithelia. Our data thus sustain a model in which Trol counters the rigidity conveyed by collagen type IV to the BM of the SE, via the regulation of the NC1-dependant assembly of its scaffold, allowing the spreading of the squamous cells, spreading which is compulsory for the architecture of the whole organ.


Asunto(s)
Carcinoma de Células Escamosas , Colágeno Tipo IV , Animales , Colágeno Tipo IV/genética , Colágeno Tipo IV/química , Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Morfogénesis , Laminina/genética , Laminina/metabolismo , Drosophila/metabolismo , Células Epiteliales/metabolismo , Carcinoma de Células Escamosas/metabolismo
3.
Curr Biol ; 32(2): 361-373.e6, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34890558

RESUMEN

Morphogens are secreted molecules that regulate and coordinate major developmental processes, such as cell differentiation and tissue morphogenesis. Depending on the mechanisms of secretion and the nature of their carriers, morphogens act at short and long range. We investigated the paradigmatic long-range activity of Hedgehog (Hh), a well-known morphogen, and its contribution to the growth and patterning of the Drosophila wing imaginal disc. Extracellular vesicles (EVs) contribute to Hh long-range activity; however, the nature, the site, and the mechanisms underlying the biogenesis of these vesicular carriers remain unknown. Here, through the analysis of mutants and a series of Drosophila RNAi-depleted wing imaginal discs using fluorescence and live-imaging electron microscopy, including tomography and 3D reconstruction, we demonstrate that microvilli of the wing imaginal disc epithelium are the site of generation of small EVs that transport Hh across the tissue. Further, we show that the Prominin-like (PromL) protein is critical for microvilli integrity. Together with actin cytoskeleton and membrane phospholipids, PromL maintains microvilli architecture that is essential to promote its secretory function. Importantly, the distribution of Hh to microvilli and its release via these EVs contribute to the proper morphogenesis of the wing imaginal disc. Our results demonstrate that microvilli-derived EVs are carriers for Hh long-range signaling in vivo. By establishing that members of the Prominin protein family are key determinants of microvilli formation and integrity, our findings support the view that microvilli-derived EVs conveying Hh may provide a means for exchanging signaling cues of high significance in tissue development and cancer.


Asunto(s)
Proteínas de Drosophila , Vesículas Extracelulares , Antígeno AC133/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Discos Imaginales , Microvellosidades/metabolismo , Morfogénesis , Alas de Animales
4.
Biol Open ; 10(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779478

RESUMEN

Wnt signalling is a core pathway involved in a wide range of developmental processes throughout the metazoa. In vitro studies have suggested that the small GTP binding protein Arf6 regulates upstream steps of Wnt transduction, by promoting the phosphorylation of the Wnt co-receptor, LRP6, and the release of ß-catenin from the adherens junctions. To assess the relevance of these previous findings in vivo, we analysed the consequence of the absence of Arf6 activity on Drosophila wing patterning, a developmental model of Wnt/Wingless signalling. We observed a dominant loss of wing margin bristles and Senseless expression in Arf6 mutant flies, phenotypes characteristic of a defect in high level Wingless signalling. In contrast to previous findings, we show that Arf6 is required downstream of Armadillo/ß-catenin stabilisation in Wingless signal transduction. Our data suggest that Arf6 modulates the activity of a downstream nuclear regulator of Pangolin activity in order to control the induction of high level Wingless signalling. Our findings represent a novel regulatory role for Arf6 in Wingless signalling.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
5.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34028543

RESUMEN

In metazoans, tissue growth and patterning is partly controlled by the Hedgehog (Hh) morphogen. Using immuno-electron microscopy on Drosophila wing imaginal discs, we identified a cellular structure, the Hherisomes, which contain the majority of intracellular Hh. Hherisomes are recycling tubular endosomes, and their formation is specifically boosted by overexpression of Hh. Expression of Rab11, a small GTPase involved in recycling endosomes, boosts the size of Hherisomes and their Hh concentration. Conversely, increased expression of the transporter Dispatched, a regulator of Hh secretion, leads to their clearance. We show that increasing Hh density in Hherisomes through Rab11 overexpression enhances both the level of Hh signaling and disc pouch growth, whereas Dispatched overexpression decreases high-level Hh signaling and growth. We propose that, upon secretion, a pool of Hh triggers low-level signaling, whereas a second pool of Hh is endocytosed and recycled through Hherisomes to stimulate high-level signaling and disc pouch growth. Altogether, our data indicate that Hherisomes are required to sustain physiological Hh activity necessary for patterning and tissue growth in the wing disc.


Asunto(s)
Proteínas de Drosophila , Proteínas Hedgehog , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endosomas/genética , Endosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Alas de Animales
6.
Development ; 148(5)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547132

RESUMEN

The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Hedgehog/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Endocitosis , Endosomas/metabolismo , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica , Proteínas Hedgehog/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutagénesis , Estabilidad Proteica , Interferencia de ARN , ARN Bicatenario/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal
7.
Dev Dyn ; 250(4): 542-561, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33269518

RESUMEN

BACKGROUND: The basement membrane (BM) provides mechanical shaping of tissues during morphogenesis. The Drosophila BM proteoglycan Perlecan is vital for this process in the wing imaginal disc. This function is thought to be fostered by the heparan sulfate chains attached to the domain I of vertebrate Perlecan. However, this domain is not present in Drosophila, and the source of Perlecan for the wing imaginal disc BM remains unclear. Here, we tackle these two issues. RESULTS: In silico analysis shows that Drosophila Perlecan holds a domain I. Moreover, by combining in situ hybridization of Perlecan mRNA and protein staining, together with tissue-specific Perlecan depletion, we find that there is an autonomous and a non-autonomous source for Perlecan deposition in the wing imaginal disc BM. We further show that both sources cooperate for correct distribution of Perlecan in the wing imaginal disc and morphogenesis of this tissue. CONCLUSIONS: These results show that Perlecan is fully conserved in Drosophila, providing a valuable in vivo model system to study its role in BM function. The existence of two different sources for Perlecan incorporation in the wing imaginal disc BM raises the possibility that inter-organ communication mediated at the level of the BM is involved in organogenesis.


Asunto(s)
Membrana Basal/metabolismo , Drosophila/crecimiento & desarrollo , Proteoglicanos de Heparán Sulfato/metabolismo , Discos Imaginales/metabolismo , Alas de Animales/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia de Consenso , Drosophila/genética , Drosophila/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Alas de Animales/metabolismo
8.
Development ; 147(24)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33355241

RESUMEN

Members of the Hedgehog family of morphogens mediate the intercellular communication necessary for the organisation and development of many animal tissues. They are modified by various lipid adducts, rendering them insoluble in hydrophilic environments and leading to the contentious question of how these molecules travel in the aqueous extracellular space. Seminal work carried out by Suzanne Eaton and her colleagues has shed light on how these morphogens can spread over long distances through their association with lipoprotein particles. In this Spotlight article, we discuss Suzanne's pioneering work and her contribution to our understanding of the transport and activity of morphogens, in particular Hedgehog. We also describe two other essential aspects of her work: the discovery and characterisation of endogenously present Hedgehog variants, as well as her proposition that, in addition to its role as a morphogen, Hedgehog acts as an endocrine hormone.


Asunto(s)
Comunicación Celular/genética , Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Morfogénesis/genética , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Transducción de Señal/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Wnt/genética
9.
J Cell Sci ; 133(18)2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32989011

RESUMEN

Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.


Asunto(s)
Vesículas Extracelulares , Proteínas Hedgehog , Animales , Comunicación Celular , Proteínas Hedgehog/genética , Humanos , Morfogénesis , Proteínas Wnt/genética
10.
Cell Rep ; 30(8): 2627-2643.e5, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101741

RESUMEN

The conserved Hedgehog signaling pathway has well-established roles in development. However, its function during adulthood remains largely unknown. Here, we investigated whether the Hedgehog signaling pathway is active during adult life in Drosophila melanogaster, and we uncovered a protective function for Hedgehog signaling in coordinating correct proteostasis in glial cells. Adult-specific depletion of Hedgehog reduces lifespan, locomotor activity, and dopaminergic neuron integrity. Conversely, increased expression of Hedgehog extends lifespan and improves fitness. Moreover, Hedgehog pathway activation in glia rescues the lifespan and age-associated defects of hedgehog mutants. The Hedgehog pathway regulates downstream chaperones, whose overexpression in glial cells was sufficient to rescue the shortened lifespan and proteostasis defects of hedgehog mutants. Finally, we demonstrate the protective ability of Hedgehog signaling in a Drosophila Alzheimer's disease model expressing human amyloid beta in the glia. Overall, we propose that Hedgehog signaling is requisite for lifespan determination and correct proteostasis in glial cells.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Longevidad , Neuroglía/metabolismo , Proteostasis , Transducción de Señal , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Mutación/genética , Neuronas/metabolismo , Neuroprotección , Análisis de Supervivencia
11.
Methods Mol Biol ; 1998: 31-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250292

RESUMEN

A large number of studies have shown that proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) can trigger the biogenesis of different types of Extracellular Vesicles (EV). The functions that these vesicular carriers exert in vivo remain, however, poorly understood. In this chapter, we describe a series of experimental approaches that we established in the Drosophila wing imaginal disc to study the importance of ESCRT-positive EVs for the extracellular transport of signaling molecules, as exemplified by a functional analysis of the mechanism of secretion and propagation of the major developmental morphogen Hedgehog (Hh).Through the combined use of genetic, cell biological, and imaging approaches, we investigate four important aspects of exovesicle biology: (1) The genetic identification of ESCRT proteins that are specifically required for Hh secretion. (2) The imaging of ESCRT and Hh-positive EVs in the lumenal space of both living and fixed wing imaginal discs. (3) The receptor-mediated capture of Hh-containing EVs on the surface of Hh-receiving cells. (4) The effect of manipulations of ESCRT function on the extracellular pool of Hh ligands.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Hedgehog/metabolismo , Microscopía Intravital/métodos , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Discos Imaginales/diagnóstico por imagen , Discos Imaginales/metabolismo , Larva , Ligandos , Microscopía Fluorescente , Unión Proteica , Fijación del Tejido/métodos , Alas de Animales/diagnóstico por imagen , Alas de Animales/metabolismo
12.
Development ; 145(24)2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30541874

RESUMEN

Hedgehog (Hh) is a conserved morphogen that controls cell differentiation and tissue patterning in metazoans. In Drosophila, the Hh signal is transduced from the G protein-coupled receptor Smoothened (Smo) to the cytoplasmic Hh signaling complex (HSC). How activated Smo is translated into a graded activation of the downstream pathway is still not well understood. In this study, we show that the last amino acids of the cytoplasmic tail of Smo, in combination with G protein-coupled receptor kinase 2 (Gprk2), bind to the regulatory domain of Fused (Fu) and highly activate its kinase activity. We further show that this binding induces changes in the association of Fu protein with the HSC and increases the proximity of the Fu catalytic domain to its substrate, the Costal2 kinesin. We propose a new model in which, depending on the magnitude of Hh signaling, Smo and Gprk2 modulate protein association and conformational changes in the HSC, which are responsible for the differential activation of the pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Dominio Catalítico , Células Cultivadas , Proteínas de Drosophila/química , Péptidos/metabolismo , Fosforilación , Unión Proteica
13.
Dev Cell ; 32(3): 290-303, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25619925

RESUMEN

The proteins of the Hedgehog (Hh) family are secreted proteins exerting short- and long-range control over various cell fates in developmental patterning. The Hh gradient in Drosophila wing imaginal discs consists of apical and basolateral secreted pools, but the mechanisms governing the overall establishment of the gradient remain unclear. We investigated the relative contributions of endocytosis and recycling to control the Hh gradient. We show that, upon its initial apical secretion, Hh is re-internalized. We examined the effect of the resistance-nodulation-division transporter Dispatched (Disp) on long-range Hh signaling and unexpectedly found that Disp is specifically required for apical endocytosis of Hh. Re-internalized Hh is then regulated in a Rab5- and Rab4-dependent manner to ensure its long-range activity. We propose that Hh-producing cells integrate endocytosis and recycling as two instrumental mechanisms contributing to regulate the long-range activity of Hh.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitosis/fisiología , Proteínas Hedgehog/metabolismo , Alas de Animales/metabolismo , Proteínas de Unión al GTP rab4/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes y Vías Metabólicas/fisiología , Transducción de Señal/fisiología
14.
Nature ; 516(7529): 99-103, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25471885

RESUMEN

The conserved family of Hedgehog (Hh) proteins acts as short- and long-range secreted morphogens, controlling tissue patterning and differentiation during embryonic development. Mature Hh carries hydrophobic palmitic acid and cholesterol modifications essential for its extracellular spreading. Various extracellular transportation mechanisms for Hh have been suggested, but the pathways actually used for Hh secretion and transport in vivo remain unclear. Here we show that Hh secretion in Drosophila wing imaginal discs is dependent on the endosomal sorting complex required for transport (ESCRT). In vivo the reduction of ESCRT activity in cells producing Hh leads to a retention of Hh at the external cell surface. Furthermore, we show that ESCRT activity in Hh-producing cells is required for long-range signalling. We also provide evidence that pools of Hh and ESCRT proteins are secreted together into the extracellular space in vivo and can subsequently be detected together at the surface of receiving cells. These findings uncover a new function for ESCRT proteins in controlling morphogen activity and reveal a new mechanism for the transport of secreted Hh across the tissue by extracellular vesicles, which is necessary for long-range target induction.


Asunto(s)
Drosophila melanogaster/embriología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Animales , Diferenciación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Espacio Extracelular/metabolismo , Hemolinfa/metabolismo , Discos Imaginales/citología , Discos Imaginales/embriología , Transporte de Proteínas , Transducción de Señal , Vesículas Transportadoras/metabolismo
15.
Nat Commun ; 5: 5034, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25289679

RESUMEN

Hedgehog (Hh) signalling is crucial for developmental patterning and tissue homeostasis. In Drosophila, Hh signalling is mediated by a bifunctional transcriptional mediator, called Cubitus interruptus (Ci). Protein Kinase A (PKA)-dependent phosphorylation of the serpentine protein Smoothened (Smo) leads to Ci activation, whereas PKA-dependent phosphorylation of Ci leads to the formation of Ci repressor form. The mechanism that switches PKA from an activator to a repressor is not known. Here we show that Hh signalling activation causes PKA to switch its substrates from Ci to Smo within the Hh signalling complex (HSC). In particular, Hh signalling increases the level of Smo, which then outcompetes Ci for association with PKA and causes a switch in PKA substrate recognition. We propose a new model in which the PKA is constitutively present and active within the HSC, and in which the relative levels of Ci and Smo within the HSC determine differential activation and cellular response to Hh signalling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Western Blotting , ADN Complementario/genética , Inmunoprecipitación , Fosforilación , Interferencia de ARN , Receptor Smoothened , Especificidad por Sustrato
16.
Nat Rev Mol Cell Biol ; 14(7): 416-29, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23719536

RESUMEN

The cloning of the founding member of the Hedgehog (HH) family of secreted proteins two decades ago inaugurated a field that has diversified to encompass embryonic development, stem cell biology and tissue homeostasis. Interest in HH signalling increased when the pathway was implicated in several cancers and congenital syndromes. The mechanism of HH signalling is complex and remains incompletely understood. Nevertheless, studies have revealed novel biological insights into this system, including the function of HH lipidation in the secretion and transport of this ligand and details of the signal transduction pathway, which involves Patched 1, Smoothened and GLI proteins (Cubitus interruptus in Drosophila melanogaster), as well as, in vertebrates, primary cilia.


Asunto(s)
Tipificación del Cuerpo , Proteínas Hedgehog/fisiología , Neoplasias/metabolismo , Transducción de Señal , Animales , Cilios/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Vías Secretoras
17.
Development ; 139(17): 3168-79, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22872085

RESUMEN

During development, secreted morphogens, such as Hedgehog (Hh), control cell fate and proliferation. Precise sensing of morphogen levels and dynamic cellular responses are required for morphogen-directed morphogenesis, yet the molecular mechanisms responsible are poorly understood. Several recent studies have suggested the involvement of a multi-protein Hh reception complex, and have hinted at an understated complexity in Hh sensing at the cell surface. We show here that the expression of the proteoglycan Dally in Hh-receiving cells in Drosophila is necessary for high but not low level pathway activity, independent of its requirement in Hh-producing cells. We demonstrate that Dally is necessary to sequester Hh at the cell surface and to promote Hh internalisation with its receptor. This internalisation depends on both the activity of the hydrolase Notum and the glycosyl-phosphatidyl-inositol (GPI) moiety of Dally, and indicates a departure from the role of the second glypican Dally-like in Hh signalling. Our data suggest that hydrolysis of the Dally-GPI by Notum provides a switch from low to high level signalling by promoting internalisation of the Hh-Patched ligand-receptor complex.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Morfogénesis/fisiología , Proteoglicanos/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Western Blotting , Células Cultivadas , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente
18.
PLoS One ; 7(3): e33665, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22432040

RESUMEN

Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.


Asunto(s)
Colesterol/farmacología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Pruebas Genéticas , Genoma de los Insectos/genética , Proteínas Hedgehog/metabolismo , Interferencia de ARN/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Genes de Insecto/genética , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Luciferasas de Renilla/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Bicatenario/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Proteína Wnt1/metabolismo
19.
Curr Opin Cell Biol ; 24(2): 173-80, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22366329

RESUMEN

Secretion of the Hedgehog morphogen induces different cell fates over the short and long ranges during developmental patterning. Mature Hedgehog carries hydrophobic palmitic acid and cholesterol modifications essential for its correct spread. The long-range activity of Hedgehog raises questions about how a dually lipidated protein can spread in the hydrophilic environment of the extracellular space. There is compelling experimental evidence in favour of the existence of several different carriers for Hedgehog transportation, via very different routes. This suggests that different accessory proteins and cellular machineries may be involved in the specific release of Hedgehog. I suggest that Hh carriers may work in parallel within a given cell and that developmental context may condition the choice of Hh carrier in secreting cells.


Asunto(s)
Proteínas Portadoras/aislamiento & purificación , Proteínas Hedgehog/metabolismo , Morfogénesis , Animales , Membrana Celular/metabolismo , Colesterol/metabolismo , Espacio Extracelular/química , Espacio Extracelular/metabolismo , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
20.
Dev Cell ; 22(2): 279-94, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22306085

RESUMEN

The graded Hedgehog (Hh) signal is transduced by the transmembrane Smoothened (Smo) proteins in both vertebrates and invertebrates. In Drosophila, associations between Smo and the Fused (Fu)/Costal-2 (Cos2)/Cubitus Interruptus (Ci) cytoplasmic complex lead to pathway activation, but it remains unclear how the cytoplasmic complex responds to and transduces different levels of Hh signaling. We show here that, within the Hh gradient field, low- and high-magnitude Smo activations control differentially the phosphorylation of Cos2 on two distinct serines. We also provide evidence that these phosphorylations depend on the Fu kinase activity and lead to a shift of Cos2 distribution from the cytoplasm to the plasma membrane. Moreover, the distinct Cos2 phosphorylation states mediate differential Hh signaling magnitude, suggesting that phosphorylation and relocation of Cos2 to the plasma membrane facilitate high-level Hh signaling through the control of Ci nuclear translocation and transcriptional activity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Proteínas Hedgehog/genética , Inmunoprecipitación , Cinesinas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Receptor Smoothened , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA