Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
HGG Adv ; 5(2): 100262, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38192100

RESUMEN

Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their "silent" mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.


Asunto(s)
Mutación Silenciosa , Humanos , Secuencia de Bases , Codón/genética , Secuencia de Aminoácidos , Análisis de Secuencia de ADN
2.
Nat Commun ; 14(1): 853, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792598

RESUMEN

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Asunto(s)
Padre , Parto , Masculino , Embarazo , Femenino , Humanos , Niño , Mutación , Medición de Riesgo , Células Germinativas , Mosaicismo , Linaje , Mutación de Línea Germinal
3.
BMC Bioinformatics ; 24(1): 49, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792982

RESUMEN

BACKGROUND: A wide range of tools are available for the detection of copy number variants (CNVs) from whole-genome sequencing (WGS) data. However, none of them focus on clinically-relevant CNVs, such as those that are associated with known genetic syndromes. Such variants are often large in size, typically 1-5 Mb, but currently available CNV callers have been developed and benchmarked for the discovery of smaller variants. Thus, the ability of these programs to detect tens of real syndromic CNVs remains largely unknown. RESULTS: Here we present ConanVarvar, a tool which implements a complete workflow for the targeted analysis of large germline CNVs from WGS data. ConanVarvar comes with an intuitive R Shiny graphical user interface and annotates identified variants with information about 56 associated syndromic conditions. We benchmarked ConanVarvar and four other programs on a dataset containing real and simulated syndromic CNVs larger than 1 Mb. In comparison to other tools, ConanVarvar reports 10-30 times less false-positive variants without compromising sensitivity and is quicker to run, especially on large batches of samples. CONCLUSIONS: ConanVarvar is a useful instrument for primary analysis in disease sequencing studies, where large CNVs could be the cause of disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Células Germinativas , Secuenciación Completa del Genoma , Flujo de Trabajo , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Sci Adv ; 8(24): eabm6858, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704577

RESUMEN

The world's coral reefs are experiencing increasing volatility in coral cover, largely because of anthropogenic environmental change, highlighting the need to understand how such volatility will influence the structure and dynamics of reef assemblages. These changes may influence not only richness or evenness but also the temporal stability of species' relative abundances (temporal beta-diversity). Here, we analyzed reef fish assemblage time series from the Great Barrier Reef to show that, overall, 75% of the variance in abundance among species was attributable to persistent differences in species' long-term mean abundances. However, the relative importance of stochastic fluctuations in abundance was higher on reefs that experienced greater volatility in coral cover, whereas it did not vary with drivers of alpha-diversity. These findings imply that increased coral cover volatility decreases temporal stability in relative abundances of fishes, a transformation that is not detectable from static measures of biodiversity.

5.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33097502

RESUMEN

Genomic data reveal single-nucleotide polymorphisms (SNPs) that may carry information about the evolutionary history of bacteria. However, it remains unclear what inferences about selection can be made from genomic SNP data. Bacterial species are often sampled during epidemic outbreaks or within hosts during the course of chronic infections. SNPs obtained from genomic analysis of these data are not necessarily fixed. Treating them as fixed during analysis by using measures such as the ratio of nonsynonymous to synonymous evolutionary changes (dN/dS) may lead to incorrect inferences about the strength and direction of selection. In this study, we consider data from a range of whole-genome sequencing studies of bacterial pathogens and explore patterns of nonsynonymous variation to assess whether evidence of selection can be identified by investigating SNP counts alone across multiple WGS studies. We visualize these SNP data in ways that highlight their relationship to neutral baseline expectations. These neutral expectations are based on a simple model of mutation, from which we simulate SNP accumulation to investigate how SNP counts are distributed under alternative assumptions about positive and negative selection. We compare these patterns with empirical SNP data and illustrate the general difficulty of detecting positive selection from SNP data. Finally, we consider whether SNP counts observed at the between-host population level differ from those observed at the within-host level and find some evidence that suggests that dynamics across these two scales are driven by different underlying processes.IMPORTANCE Identifying selection from SNP data obtained from whole-genome sequencing studies is challenging. Some current measures used to identify and quantify selection acting on genomes rely on fixed differences; thus, these are inappropriate for SNP data where variants are not fixed. With the increase in whole-genome sequencing studies, it is important to consider SNP data in the context of evolutionary processes. How SNPs are counted and analyzed can help in understanding mutation accumulation and trajectories of strains. We developed a tool for identifying possible evidence of selection and for comparative analysis with other SNP data. We propose a model that provides a rule-of-thumb guideline and two new visualization techniques that can be used to interpret and compare SNP data. We quantify the expected proportion of nonsynonymous SNPs in coding regions under neutrality and demonstrate its use in identifying evidence of positive and negative selection from simulations and empirical data.


Asunto(s)
Bacterias/genética , Genoma Bacteriano , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Evolución Biológica
6.
Mol Cell Proteomics ; 19(11): 1876-1895, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32817346

RESUMEN

Co-fractionation MS (CF-MS) is a technique with potential to characterize endogenous and unmanipulated protein complexes on an unprecedented scale. However this potential has been offset by a lack of guidelines for best-practice CF-MS data collection and analysis. To obtain such guidelines, this study thoroughly evaluates novel and published Saccharomyces cerevisiae CF-MS data sets using very high proteome coverage libraries of yeast gold standard complexes. A new method for identifying gold standard complexes in CF-MS data, Reference Complex Profiling, and the Extending 'Guilt-by-Association' by Degree (EGAD) R package are used for these evaluations, which are verified with concurrent analyses of published human data. By evaluating data collection designs, which involve fractionation of cell lysates, it is found that near-maximum recall of complexes can be achieved with fewer samples than published studies. Distributing sample collection across orthogonal fractionation methods, rather than a single high resolution data set, leads to particularly efficient recall. By evaluating 17 different similarity scoring metrics, which are central to CF-MS data analysis, it is found that two metrics rarely used in past CF-MS studies - Spearman and Kendall correlations - and the recently introduced Co-apex metric frequently maximize recall, whereas a popular metric-Euclidean distance-delivers poor recall. The common practice of integrating external genomic data into CF-MS data analysis is also evaluated, revealing that this practice may improve the precision and recall of known complexes but is generally unsuitable for predicting novel complexes in model organisms. If studying nonmodel organisms using orthologous genomic data, it is found that particular subsets of fractionation profiles (e.g. the lowest abundance quartile) should be excluded to minimize false discovery. These assessments are summarized in a series of universally applicable guidelines for precise, sensitive and efficient CF-MS studies of known complexes, and effective predictions of novel complexes for orthogonal experimental validation.


Asunto(s)
Fraccionamiento Químico/métodos , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía en Gel , Cromatografía Liquida/métodos , Ontología de Genes , Humanos , Estándares de Referencia
7.
BMC Microbiol ; 20(Suppl 1): 83, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32321427

RESUMEN

BACKGROUND: The human gut microbiome plays a critical role in the carcinogenesis of colorectal cancer (CRC). However, a comprehensive analysis of the interaction between the host and microbiome is still lacking. RESULTS: We found correlations between the change in abundance of microbial taxa, butyrate-related colonic metabolites, and methylation-associated host gene expression in colonic tumour mucosa tissues compared with the adjacent normal mucosa tissues. The increase of genus Fusobacterium abundance was correlated with a decrease in the level of 4-hydroxybutyric acid (4-HB) and expression of immune-related peptidase inhibitor 16 (PI16), Fc Receptor Like A (FCRLA) and Lymphocyte Specific Protein 1 (LSP1). The decrease in the abundance of another potentially 4-HB-associated genus, Prevotella 2, was also found to be correlated with the down-regulated expression of metallothionein 1 M (MT1M). Additionally, the increase of glutamic acid-related family Halomonadaceae was correlated with the decreased expression of reelin (RELN). The decreased abundance of genus Paeniclostridium and genus Enterococcus were correlated with increased lactic acid level, and were also linked to the expression change of Phospholipase C Beta 1 (PLCB1) and Immunoglobulin Superfamily Member 9 (IGSF9) respectively. Interestingly, 4-HB, glutamic acid and lactic acid are all butyrate precursors, which may modify gene expression by epigenetic regulation such as DNA methylation. CONCLUSIONS: Our study identified associations between previously reported CRC-related microbial taxa, butyrate-related metabolites and DNA methylation-associated gene expression in tumour and normal colonic mucosa tissues from CRC patients, which uncovered a possible mechanism of the role of microbiome in the carcinogenesis of CRC. In addition, these findings offer insight into potential new biomarkers, therapeutic and/or prevention strategies for CRC.


Asunto(s)
Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Butiratos/metabolismo , Colon/metabolismo , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Metaboloma , Proteína Reelina , Transcriptoma
8.
Microbiome ; 8(1): 37, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32178729

RESUMEN

BACKGROUND: Resident soil microbiota play key roles in sustaining the core ecosystem processes of terrestrial Antarctica, often involving unique taxa with novel functional traits. However, the full scope of biodiversity and the niche-neutral processes underlying these communities remain unclear. In this study, we combine multivariate analyses, co-occurrence networks and fitted species abundance distributions on an extensive set of bacterial, micro-eukaryote and archaeal amplicon sequencing data to unravel soil microbiome patterns of nine sites across two east Antarctic regions, the Vestfold Hills and Windmill Islands. To our knowledge, this is the first microbial biodiversity report on the hyperarid Vestfold Hills soil environment. RESULTS: Our findings reveal distinct regional differences in phylogenetic composition, abundance and richness amongst microbial taxa. Actinobacteria dominated soils in both regions, yet Bacteroidetes were more abundant in the Vestfold Hills compared to the Windmill Islands, which contained a high abundance of novel phyla. However, intra-region comparisons demonstrate greater homogeneity of soil microbial communities and measured environmental parameters between sites at the Vestfold Hills. Community richness is largely driven by a variable suite of parameters but robust associations between co-existing members highlight potential interactions and sharing of niche space by diverse taxa from all three microbial domains of life examined. Overall, non-neutral processes appear to structure the polar soil microbiomes studied here, with niche partitioning being particularly strong for bacterial communities at the Windmill Islands. Eukaryotic and archaeal communities reveal weaker niche-driven signatures accompanied by multimodality, suggesting the emergence of neutrality. CONCLUSION: We provide new information on assemblage patterns, environmental drivers and non-random occurrences for Antarctic soil microbiomes, particularly the Vestfold Hills, where basic diversity, ecology and life history strategies of resident microbiota are largely unknown. Greater understanding of these basic ecological concepts is a pivotal step towards effective conservation management.


Asunto(s)
Bacterias/clasificación , Microbiota , Microbiología del Suelo , Regiones Antárticas , Biodiversidad , Ecosistema , Filogenia , ARN Ribosómico 16S/genética , Suelo/química
9.
Ecology ; 101(1): e02893, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529700

RESUMEN

The extent to which populations in nature are regulated by density-dependent processes is unresolved. While experiments increasingly find evidence of strong density dependence, unmanipulated population time series yield much more ambiguous evidence of regulation, especially when accounting for effects of observation error. Here, we reexamine the evidence for density dependence in time series of population sizes in nature, by conducting an aggregate analysis of the populations in the Global Population Dynamics Database (GPDD). First, following the conventional approach, we fit a density-dependent and a density-independent variant of the Gompertz state-space model to each time series. Then, we conduct an aggregate analysis of the entire database by considering two random-effects density-dependent models that leverage information across data sets. When individual time series are tested independently, we find very little evidence for density dependence. However, in the aggregate, we find very strong evidence for density dependence, even though, paradoxically, estimated strengths of density dependence for individual time series tend to be weaker than when each individual time series is analyzed independently. Furthermore, a hierarchical model that accounts for taxonomic variation in the strength of density dependence reveals that density dependence is consistently stronger in insects and fish than in birds and mammals. Our findings resolve apparent inconsistencies between observational and experimental studies of density dependence by revealing that the observational record does indeed contain strong support for the hypothesis that density dependence is widespread in nature.


Asunto(s)
Aves , Modelos Biológicos , Animales , Peces , Densidad de Población , Dinámica Poblacional
10.
PLoS One ; 12(7): e0181790, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28738071

RESUMEN

Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.


Asunto(s)
Modelos Estadísticos , Análisis Multivariante , Distribuciones Estadísticas , Simulación por Computador , Ecología/métodos , Probabilidad , Proyectos de Investigación
11.
Proc Natl Acad Sci U S A ; 111(23): 8524-9, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912168

RESUMEN

Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models--which assume ecological equivalence of species--to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Asunto(s)
Algoritmos , Biodiversidad , Biología Marina/métodos , Modelos Biológicos , Clima Frío , Geografía , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical
12.
Ecol Lett ; 16(2): 140-50, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23095077

RESUMEN

A major ecosystem effect of biodiversity is to stabilise assemblages that perform particular functions. However, diversity-stability relationships (DSRs) are analysed using a variety of different population and community properties, most of which are adopted from theory that makes several restrictive assumptions that are unlikely to be reflected in nature. Here, we construct a simple synthesis and generalisation of previous theory for the DSR. We show that community stability is a product of two quantities: the synchrony of population fluctuations, and an average species-level population stability that is weighted by relative abundance. Weighted average population stability can be decomposed to consider effects of the mean-variance scaling of abundance, changes in mean abundance with diversity and differences in species' mean abundance in monoculture. Our framework makes explicit how unevenness in the abundances of species in real communities influences the DSR, which occurs both through effects on community synchrony, and effects on weighted average population variability. This theory provides a more robust framework for analysing the results of empirical studies of the DSR, and facilitates the integration of findings from real and model communities.


Asunto(s)
Biodiversidad , Ecosistema , Modelos Biológicos , Dinámica Poblacional
13.
Ecology ; 93(4): 891-901, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22690639

RESUMEN

Biodiversity may provide insurance against ecosystem collapse by stabilizing assemblages that perform particular ecological functions (the "portfolio effect"). However, the extent to which this occurs in nature and the importance of different mechanisms that generate portfolio effects remain controversial. On coral reefs, herbivory helps maintain coral dominated states, so volatility in levels of herbivory has important implications for reef ecosystems. Here, we used an extensive time series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the strength of the portfolio effect for herbivorous fishes. Then, we disentangled the contributions of two mechanisms that underlie it (compensatory interactions and differential responses to environmental fluctuations ["response diversity"]) by fitting a community-dynamic model that explicitly includes terms for both mechanisms. We found that portfolio effects operate strongly in herbivorous fishes, as shown by nearly independent fluctuations in abundances over time. Moreover, we found strong evidence for high response diversity, with nearly independent responses to environmental fluctuations. In contrast, we found little evidence that the portfolio effect in this system was enhanced by compensatory ecological interactions. Our results show that portfolio effects are driven principally by response diversity for herbivorous fishes on coral reefs. We conclude that portfolio effects can be very strong in nature and that, for coral reefs in particular, response diversity may help maintain herbivory above the threshold levels that trigger regime shifts.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Peces/clasificación , Peces/fisiología , Herbivoria , Animales , Australia
14.
Am Nat ; 176(3): 312-21, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20624091

RESUMEN

Positive density dependence (i.e., the Allee effect; AE) often has important implications for the dynamics and conservation of populations. Here, we show that density-dependent sex ratio adjustment in response to sexual selection may be a common AE mechanism. Specifically, using an analytical model we show that an AE is expected whenever one sex is more fecund than the other and sex ratio bias toward the less fecund sex increases with density. We illustrate the robustness of this pattern, using Monte Carlo simulations, against a range of body size-fecundity relationships and sex-allocation strategies. Finally, we test the model using the sex-changing polygynous reef fish Parapercis cylindrica; positive density dependence in the strength of sexual selection for male size is evidenced as the causal mechanism driving local sex ratio adjustment, hence the AE. Model application may extend to invertebrates, reptiles, birds, and mammals, in addition to over 70 reef fishes. We suggest that protected areas may often outperform harvest quotas as a conservation tool since the latter promotes population fragmentation, reduced polygyny, a balancing of the sex ratio, and hence up to a 50% decline in per capita fecundity, while the former maximizes polygyny and source-sink potential.


Asunto(s)
Modelos Biológicos , Perciformes/fisiología , Razón de Masculinidad , Animales , Femenino , Organismos Hermafroditas , Masculino , Densidad de Población , Procesos de Determinación del Sexo , Preselección del Sexo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA