RESUMEN
High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.
Asunto(s)
Factor de Transcripción Activador 3 , Cisplatino , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Humanos , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air-liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses.
Asunto(s)
Fenómenos Biológicos , Neoplasias Ováricas , Femenino , Humanos , Ratones , Animales , Perfusión , Microambiente TumoralRESUMEN
1. The utility of 1-aminobenzotriazole (ABT), incorporated in food, has been investigated as an approach for longer term inhibition of cytochrome P450 (P450) enzymes in mice. 2. In rats, ABT inhibits gastric emptying, to investigate this potential limitation in mice we examined the effect of ABT administration on the oral absorption of NVS-CRF38. Two hour prior oral treatment with 100 mg/kg ABT inhibited the oral absorption of NVS-CRF38, Tmax was 4 hours for ABT-treated mice compared to 0.5 hours in the control group. 3. A marked inhibition of hepatic P450 activity was observed in mice fed with ABT containing food pellets for 1 month. P450 activity, as measured by the oral clearance of antipyrine, was inhibited on day 3 (88% of control), week 2 (83% of control) and week 4 (80% of control). 4. Tmax values for antipyrine were comparable between ABT-treated mice and the control group, alleviating concerns about impaired gastric function. 5. Inclusion of ABT in food provides a minimally invasive and convenient approach to achieve longer term inhibition of P450 activity in mice. This model has the potential to enable pharmacological proof-of-concept studies for research compounds which are extensively metabolised by P450 enzymes.
Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Triazoles/farmacología , Administración Oral , Animales , Ratones , Oxazoles/metabolismo , Pirazoles/metabolismoRESUMEN
Niphathesine C and related pyridine alkaloids are well known natural products with interesting antimicrobial activities, characterized by a pyridine ring and a lipophilic side chain with a terminal nitrogen-containing functional group. This paper describes the synthesis of analogues of these alkylpyridine alkaloids with variation of the heterocyclic ring and the terminal functional group. Key steps of the syntheses are a Sonogashira reaction of appropriate aryl iodides with undec-10-ynol or undec-10-ynoic acid derivatives. The resulting compounds were tested in an agar diffusion assay against several bacteria and fungi.