Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Biol Macromol ; 278(Pt 3): 134848, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168197

RESUMEN

Diverse uses of maize oil attracted various stakeholders, including food, feed, and bioenergy, highlighting the increased demand for sustainable production. Here, 48 diverse sub-tropical maize genotypes varying for dgat1-2 and fatb genes governing oil attributes, were evaluated in three diverse locations to assess trends of oil content, fatty acid (FA) profile, the effect of environment on oil attributes, the impact of different gene combinations and determine FA health and nutritional properties. The genotypes revealed wide variation in oil content (OC: 3.4-6.8 %) and FA compositional traits, namely palmitic (PA, 11.3-24.1 %), oleic (OA, 21.5-42.7 %), linoleic (LA, 36.6-61.7 %), and linolenic (ALA, 0.7-2.3 %) acids. Double-mutants with both favourable alleles (dd/ff) exhibited 51.6 % higher oil, 33.2 % higher OA, and 30.2 % reduced PA compared to wild-types (d+d+/f+f+) across locations. These double-mutants had lower saturated FA (12.2 %), and higher unsaturated FA (87.0 %), indicating reduced susceptibility to autooxidation, with lower atherogenicity (0.14), thrombogenicity (0.27) and peroxidisability (48.15), higher cholesterolemic index (7.16), optimum oxidability (5.27) and higher nutritive-value-index (3.35) compared to d+d+/f+f+, making them promising for significant health and nutritional benefits. Locally adapted stable novel double-mutants with high-oil and better FA properties identified here can expedite the maize breeding programs, meeting production demands and addressing long-standing challenges for breeders.

2.
Plant J ; 119(5): 2402-2422, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990624

RESUMEN

Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.


Asunto(s)
Aceite de Maíz , Ácidos Grasos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/genética , Ácidos Grasos/metabolismo , Genómica/métodos , Vitamina E/metabolismo , Ácido Oléico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/química , Ácido Palmítico/metabolismo , Provitaminas/metabolismo , Alelos , Fitomejoramiento/métodos , Repeticiones de Microsatélite/genética
3.
3 Biotech ; 14(6): 150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725866

RESUMEN

Calcium-dependent protein kinase (CDPK) is member of one of the most important signalling cascades operating inside the plant system due to its peculiar role as thermo-sensor. Here, we identified 28 full length putative CDPKs from wheat designated as TaCDPK (1-28). Based on digital gene expression, we cloned full length TaCPK-1 gene of 1691 nucleotides with open reading frame (ORF) of 548 amino acids (accession number OP125853). The expression of TaCPK-1 was observed maximum (3.1-fold) in leaf of wheat cv. HD2985 (thermotolerant) under T2 (38 ± 3 °C, 2 h), as compared to control. A positive correlation was observed between the expression of TaCPK-1 and other stress-associated genes (MAPK6, CDPK4, HSFA6e, HSF3, HSP17, HSP70, SOD and CAT) involved in thermotolerance. Global protein kinase assay showed maximum activity in leaves, as compared to root, stem and spike under heat stress. Immunoblot analysis showed abundance of CDPK protein in wheat cv. HD2985 (thermotolerant) in response to T2 (38 ± 3 °C, 2 h), as compared to HD2329 (thermosusceptible). Calcium ion (Ca2+), being inducer of CDPK, showed strong Ca-signature in the leaf tissue (Ca-622 ppm) of thermotolerant wheat cv. under heat stress, whereas it was minimum (Ca-201 ppm) in spike tissue. We observed significant variations in the ionome of wheat under HS. To conclude, TaCPK-1 plays important role in triggering signaling network and in modulation of HS-tolerance in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03989-6.

4.
Plants (Basel) ; 11(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35890449

RESUMEN

This study reports the identification of a unique lentil (Lens culinaris Medik.) genotype L4717-NM, a natural mutant (NM) derived from a variety L4717, producing brown, black, and spotted seed-coat colored seeds in a single plant, generation after generation, in different frequencies. The genetic similarity of L4717 with that of L4717-NM expressing anomalous seed-coat color was established using 54 SSR markers. In addition, various biochemical parameters such as TPC (total phenolic content), TFC (total flavonoid content), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), H2O2 (peroxide quantification), TCC (total carotenoids content), TAC (total anthocyanin content), and TAA (total ascorbic acid) were also studied in the seeds, sprouts, and seedlings of L4717, brown, black, and spotted seed-coat colored seeds. Stage-specific variations for the key biochemical parameters were recorded, and seedling stage was found the best for many parameters. Moreover, seeds with black seed coat showed better nutraceutical values for most of the studied traits. A highly significant (p ≤ 0.01) and positive correlation was observed between DPPH and TPC, TAA, TFC, etc., whereas, protein content showed a negative correlation with the other studied parameters. The seed coat is maternal tissue and we expect expression of seed-coat color as per the maternal genotype. However, such an anomalous seed-coat expression, which seems to probably be governed by some transposable element in the identified genotype, warrants more detailed studies involving exploitation of the anthocyanin pathway.

5.
Toxins (Basel) ; 11(3)2019 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832332

RESUMEN

Bacillus thuringiensis insecticidal proteins (Bt ICPs) are reliable and valuable options for pest management in crops. Protein engineering of Bt ICPs is a competitive alternative for resistance management in insects. The primary focus of the study was to reiterate the translational utility of a protein-engineered chimeric Cry toxin, Cry1AcF, for its broad spectrum insecticidal efficacy using molecular modeling and docking studies. In-depth bioinformatic analysis was undertaken for structure prediction of the Cry toxin as the ligand and aminopeptidase1 receptors (APN1) from Helicoverpa armigera (HaAPN1) and Spodoptera litura (SlAPN1) as receptors, followed by interaction studies using protein-protein docking tools. The study revealed feasible interactions between the toxin and the two receptors through H-bonding and hydrophobic interactions. Further, molecular dynamics simulations substantiated the stability of the interactions, proving the broad spectrum efficacy of Cry1AcF in controlling H. armigera and S. litura. These findings justify the utility of protein-engineered toxins in pest management.


Asunto(s)
Proteínas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insectos/química , Insecticidas/química , Modelos Moleculares , Mariposas Nocturnas , Control Biológico de Vectores
6.
3 Biotech ; 8(1): 50, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29354361

RESUMEN

Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 (GmItpk2), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that GmITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 ß barrel sheets with ATP-binding site close to ß sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.

7.
3 Biotech ; 8(1): 54, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29354365

RESUMEN

Designing low-phytate crops without affecting the developmental process in plants had led to the identification of ABCC5 gene in soybean. The GmABCC5 gene was identified and a partial gene sequence was cloned from popular Indian soybean genotype Pusa16. Conserved domains and motifs unique to ABC transporters were identified in the 30 homologous sequences retrieved by BLASTP analysis. The homologs were analyzed for their evolutionary relationship and physiochemical properties. Conserved domains, transmembrane architecture and secondary structure of GmABCC5 were predicted with the aid of computational tools. Analysis identified 53 alpha helices and 31 beta strands, predicting 60% residues in alpha conformation. A three-dimensional (3D) model for GmABCC5 was developed based on 5twv.1.B (Homo sapiens) template homology to gain better insight into its molecular mechanism of transport and sequestration. Spatio-temporal real-time PCR analysis identified mid-to-late seed developmental stages as the time window for the maximum GmABCC5 gene expression, a potential target stage for phytate reduction. Results of this study provide valuable insights into the structural and functional characteristics of GmABCC5, which may be further utilized for the development of nutritionally enriched low-phytate soybean with improved mineral bioavailability.

8.
J Agric Food Chem ; 65(7): 1395-1400, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28114755

RESUMEN

Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.


Asunto(s)
Proteínas Bacterianas/genética , Cajanus/química , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas de Plantas/química , Plantas Modificadas Genéticamente/química , Semillas/química , Aminoácidos/análisis , Aminoácidos/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Cajanus/genética , Cajanus/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Minerales/análisis , Minerales/metabolismo , Valor Nutritivo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteómica , Semillas/genética , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA