Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Water Res ; 261: 122028, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991248

RESUMEN

Emerging evidence indicates that micro- and macro-plastics present in water can support a diverse microbial community, including potential human pathogens (e.g., bacteria, viruses). This interaction raises important concerns surrounding the role and suitability of current bathing water regulations and associated pathogen exposure risk within beach environments. In response to this, we critically evaluated the available evidence on plastic-pathogen interactions and identified major gaps in knowledge. This review highlighted the need for a conceptual shift in risk management at public beaches recognising: (i) interconnected environmental risks, e.g., associations between microbial compliance parameters, potential pathogens and both contemporary and legacy plastic pollution; and (ii) an appreciation of risk of exposure to plastic co-pollutants for both water and waterside users. We present a decision-making framework to identify options to manage plastic-associated pathogen risks alongside short- and longer-term research priorities. This advance will help deliver improvements in managing plastic-associated pathogen risk, acknowledging that human exposure potential is not limited to only those who engage in water-based activity. We argue that adopting these recommendations will help create an integrated approach to managing and reducing human exposure to pathogens at bathing, recreational water and beach environments.


Asunto(s)
Playas , Plásticos , Gestión de Riesgos , Humanos , Microbiología del Agua , Contaminación del Agua
2.
Nat Commun ; 15(1): 5344, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914573

RESUMEN

Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Phaeophyceae , Algas Marinas , Algas Marinas/fisiología
3.
Environ Microbiome ; 19(1): 27, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685074

RESUMEN

BACKGROUND: Plastics pollution and antimicrobial resistance (AMR) are two major environmental threats, but potential connections between plastic associated biofilms, the 'plastisphere', and dissemination of AMR genes are not well explored. RESULTS: We conducted mesocosm experiments tracking microbial community changes on plastic surfaces transitioning from wastewater effluent to marine environments over 16 weeks. Commonly used plastics, polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE) and polyethylene terephthalate (PET) incubated in wastewater effluent, river water, estuarine water, and in the seawater for 16 weeks, were analysed via 16S rRNA gene amplicon and shotgun metagenome sequencing. Within one week, plastic-colonizing communities shifted from wastewater effluent-associated microorganisms to marine taxa, some members of which (e.g. Oleibacter-Thalassolituus and Sphingomonas spp., on PET, Alcanivoracaceae on PET and PP, or Oleiphilaceae, on all polymers), were selectively enriched from levels undetectable in the starting communities. Remarkably, microbial biofilms were also susceptible to parasitism, with Saprospiraceae feeding on biofilms at late colonisation stages (from week 6 onwards), while Bdellovibrionaceae were prominently present on HDPE from week 2 and LDPE from day 1. Relative AMR gene abundance declined over time, and plastics did not become enriched for key AMR genes after wastewater exposure. CONCLUSION: Although some resistance genes occurred during the mesocosm transition on plastic substrata, those originated from the seawater organisms. Overall, plastic surfaces incubated in wastewater did not act as hotspots for AMR proliferation in simulated marine environments.

5.
Ambio ; 52(10): 1575-1591, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37286918

RESUMEN

There is an urgent need to understand and address the risks associated with a warming climate for ecosystems and societies in the Arctic and sub-Arctic regions. There are major gaps in our understanding of the complex effects of climate change-including extreme events, cascading impacts across ecosystems, and the underlying socioecological dynamics and feedbacks-all of which need collaborative efforts to be resolved. Here, we present results where climate scientists, ecologists, social scientists, and practitioners were asked to identify the most urgent research needs for understanding climate change impacts and to identify the actions for reducing future risks in catchment areas in the Norwegian High North, a region that encompasses both Arctic and sub-Arctic climates in northern Norway. From a list of 77 questions, our panel of 19 scientists and practitioners identified 15 research needs that should be urgently addressed. We particularly urge researchers to investigate cross-ecosystem impacts and the socioecological feedbacks that could amplify or reduce risks for society.


Asunto(s)
Cambio Climático , Ecosistema , Noruega , Regiones Árticas
7.
Biol Rev Camb Philos Soc ; 97(4): 1306-1324, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35174616

RESUMEN

Network theory offers innovative tools to explore the complex ecological mechanisms regulating species associations and interactions. Although interest in ecological networks has grown steadily during the last two decades, the application of network approaches has been unequally distributed across different study systems: while some kinds of interactions (e.g. plant-pollinator and host-parasite) have been extensively investigated, others remain relatively unexplored. Among the latter, aquatic macrophyte-animal associations in coastal environments have been largely neglected, despite their major role in littoral ecosystems. The ubiquity of macrophyte systems, their accessibility and multi-faceted ecological, economical and societal importance make macrophyte-animal systems an ideal subject for ecological network science. In fact, macrophyte-animal networks offer an aquatic counterpart to terrestrial plant-animal networks. In this review, we show how the application of network analysis to aquatic macrophyte-animal associations has the potential to broaden our understanding of how coastal ecosystems function. Network analysis can also provide a key to understanding how such ecosystems will respond to on-going and future threats from anthropogenic disturbance and environmental change. For this, we: (i) identify key issues that have limited the application of network theory and modelling to aquatic animal-macrophyte associations; (ii) illustrate through examples based on empirical data how network analysis can offer new insights on the complexity and functioning of coastal ecosystems; and (iii) provide suggestions for how to design future studies and establish this new research line into network ecology.


Asunto(s)
Ecosistema , Plantas , Animales , Ambiente
9.
Ambio ; 51(2): 298-306, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34279810

RESUMEN

The Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


Asunto(s)
Ecosistema , Cubierta de Hielo , Regiones Árticas , Cambio Climático , Océanos y Mares
10.
Microorganisms ; 9(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672195

RESUMEN

The relative flow of carbon through the viral shunt and the microbial loop is a pivotal factor controlling the contribution of secondary production to the food web and to rates of nutrient remineralization and respiration. The current study examines the significance of these processes in the coastal waters of the Antarctic during the productive austral summer months. Throughout the study a general trend towards lower bacterioplankton and heterotrophic nanoflagellate (HNF) abundances was observed, whereas virioplankton concentration increased. A corresponding decline of HNF grazing rates and shift towards viral production, indicative of viral infection, was measured. Carbon flow mediated by HNF grazing decreased by more than half from 5.7 µg C L-1 day-1 on average in December and January to 2.4 µg C L-1 day-1 in February. Conversely, carbon flow through the viral shunt increased substantially over the study from on average 0.9 µg C L-1 day-1 in December to 7.6 µg C L-1 day-1 in February. This study shows that functioning of the coastal Antarctic microbial community varied considerably over the productive summer months. In early summer, the system favors transfer of matter and energy to higher trophic levels via the microbial loop, however towards the end of summer carbon flow is redirected towards the viral shunt, causing a switch towards more recycling and therefore increased respiration and regeneration.

11.
Front Microbiol ; 11: 572931, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193176

RESUMEN

Marine hydrocarbon-degrading bacteria play an important role in natural petroleum biodegradation processes and were initially associated with man-made oil spills or natural seeps. There is no full clarity though on what, in the absence of petroleum, their natural niches are. Few studies pointed at some marine microalgae that produce oleophilic compounds (alkanes, long-chain fatty acids, and alcohols) as potential natural hosts of these bacteria. We established Dansk crude oil-based enrichment cultures with photobioreactor-grown marine microalgae cultures Pavlova lutheri and Nannochloropsis oculata and analyzed the microbial succession using cultivation and SSU (16S) rRNA amplicon sequencing. We found that petroleum enforced a strong selection for members of Alpha- and Gamma-proteobacteria in both enrichment cultures with the prevalence of Alcanivorax and Marinobacter spp., well-known hydrocarbonoclastic bacteria. In total, 48 non-redundant bacterial strains were isolated and identified to represent genera Alcanivorax, Marinobacter, Thalassospira, Hyphomonas, Halomonas, Marinovum, Roseovarius, and Oleibacter, which were abundant in sequencing reads in both crude oil enrichments. Our assessment of public databases demonstrated some overlaps of geographical sites of isolation of Nannochloropsis and Pavlova with places of molecular detection and isolation of Alcanivorax and Marinobacter spp. Our study suggests that these globally important hydrocarbon-degrading bacteria are associated with P. lutheri and N. oculata.

12.
Proc Biol Sci ; 287(1929): 20200492, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32546091

RESUMEN

Current concerns about climate change have led to intensive research attempting to understand how climate-driven stressors affect the performance of organisms, in particular the offspring of many invertebrates and fishes. Although stressors are likely to act on several stages of the life cycle, little is known about their action across life phases, for instance how multiple stressors experienced simultaneously in the maternal environment can modulate the responses to the same stressors operating in the offspring environment. Here, we study how performance of offspring of a marine invertebrate (shore crab Carcinus maenas) changes in response to two stressors (temperature and salinity) experienced during embryogenesis in brooding mothers from different seasons. On average, offspring responses were antagonistic: high temperature mitigated the negative effects of low salinity on survival. However, the magnitude of the response was modulated by the temperature and salinity conditions experienced by egg-carrying mothers. Performance also varied among cohorts, perhaps reflecting genetic variation, and/or maternal conditions prior to embryogenesis. This study contributes towards the understanding of how anthropogenic modification of the maternal environment drives offspring performance in brooders.


Asunto(s)
Braquiuros/fisiología , Animales , Cambio Climático , Efecto de Cohortes , Ecosistema , Femenino , Estadios del Ciclo de Vida , Madres , Salinidad , Estrés Fisiológico , Temperatura
13.
ISME J ; 12(5): 1237-1251, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29348581

RESUMEN

Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.


Asunto(s)
Diatomeas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Cubierta de Hielo/microbiología , Regiones Antárticas , Diatomeas/genética , Ecosistema , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Salinidad , Agua de Mar , Temperatura
14.
Sci Total Environ ; 508: 145-54, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25555556

RESUMEN

Climate change scenarios for northern boreal regions indicate that there will be increasing temperature and precipitation, and the changes are expected to be larger in winter than in summer. These precipitation and discharge patterns, coupled with shorter ice cover/soil frost periods in the future would be expected to contribute significantly to changing flow paths of organic matter over a range of land use patterns. In order to study the impact of climate change on the seasonality of organic matter export we compared total organic carbon (TOC) and total organic nitrogen (TON) concentrations and export, during different seasons and climatically different years, over 12 years for 30 Finnish rivers separated into forest, agriculture and peat dominated catchments. The mean monthly TOC concentrations were highest during autumn and there was also a peak in May during the highest flow period. The mean monthly concentrations of TON were lowest during winter, increased in spring and remaining high throughout summer and autumn. The TOC/TON ratios were lowest during summer and highest during winter, and in all seasons the ratios were lowest in catchments with a high proportion of agricultural land and highest in peat-dominated catchments. The seasonality of TOC and TON exports reflected geographical location, hydrology and land use patterns. Most of the TOC and TON were transported during the high flow following the spring snowmelt and during rainfall in autumn. In all catchments the relative importance of the spring snowmelt decreased in wet and warm years. However, in peat-dominated catchments the proportion of spring period was over 30% of the annual export even in these wet and warm years, while in other catchments the proportion was about 20%. This might be linked to the northern location of the peat-dominated catchments and the permanent snow cover and spring snowmelt, even in warm years.


Asunto(s)
Carbono/análisis , Cambio Climático , Clima , Nitrógeno/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Movimientos del Agua
15.
Environ Sci Technol ; 48(21): 12543-51, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25260159

RESUMEN

This study measured the effects of land use on organic matter released to surface waters in a boreal peat catchment using radiocarbon dating of particulate and dissolved organic carbon (POC and DOC), DOC concentration, stable carbon and nitrogen isotope composition, and optical measurements. Undisturbed sites invariably released modern DOC and POC (<20 years old), and seasonal forcing had little impact on the age distribution. Release of pre-1950 carbon was detected at peat extraction, agricultural and drained sites, and was consistently observed at agricultural and peat extraction areas throughout the seasons. Conventional mean DOC ages reached 3,100 (±122) years before collection. On average, DOC concentrations were up to 38% higher at impacted sites compared to natural areas, but there was no significant effect of land use on surface water DOC concentrations. The study indicates that the true extent of land use impacts is not necessarily detectible through changes in DOC concentration alone: Radiocarbon dating was essential to show that leaching of old soil organic matter at modified sites had replaced, rather than supplemented, the modern DOM that is usually released from pristine peatlands. Relationships between the specific fluorescence intensity of DOM and its radiocarbon age were identified, indicating that optical techniques may provide a method for the detection of changes in DOM age.


Asunto(s)
Ecosistema , Estaciones del Año , Implantes Absorbibles , Agricultura , Regiones Árticas , Carbono/análisis , Datación Radiométrica , Suelo
16.
Microbiologyopen ; 3(1): 139-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24443388

RESUMEN

The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation.


Asunto(s)
Bacterias/aislamiento & purificación , Cubierta de Hielo/microbiología , Microbiota/fisiología , Compuestos Orgánicos/química , Agua de Mar/microbiología , Bacterias/genética , Carga Bacteriana , ADN Bacteriano/genética , Ecosistema , Congelación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/fisiología , Microbiota/genética , Mar del Norte , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Ribotipificación , Salinidad , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
17.
Proc Natl Acad Sci U S A ; 110(39): 15734-9, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24019487

RESUMEN

Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.


Asunto(s)
Biopolímeros/análisis , Carbohidratos/análisis , Cubierta de Hielo/química , Regiones Antárticas , Regiones Árticas , Modelos Químicos , Peso Molecular , Solubilidad
18.
PLoS Negl Trop Dis ; 7(8): e2374, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967363

RESUMEN

Genetic-modification strategies are currently being developed to reduce the transmission of vector-borne diseases, including African trypanosomiasis. For tsetse, the vector of African trypanosomiasis, a paratransgenic strategy is being considered: this approach involves modification of the commensal symbiotic bacteria Sodalis to express trypanosome-resistance-conferring products. Modified Sodalis can then be driven into the tsetse population by cytoplasmic incompatibility (CI) from Wolbachia bacteria. To evaluate the effectiveness of this paratransgenic strategy in controlling African trypanosomiasis, we developed a three-species mathematical model of trypanosomiasis transmission among tsetse, humans, and animal reservoir hosts. Using empirical estimates of CI parameters, we found that paratransgenic tsetse have the potential to eliminate trypanosomiasis, provided that any extra mortality caused by Wolbachia colonization is low, that the paratransgene is effective at protecting against trypanosome transmission, and that the target tsetse species comprises a large majority of the tsetse population in the release location.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Enterobacteriaceae/crecimiento & desarrollo , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Wolbachia/crecimiento & desarrollo , Animales , Femenino , Humanos , Masculino , Interacciones Microbianas , Modelos Teóricos , Tripanosomiasis Africana/transmisión
19.
Bioresour Technol ; 124: 387-93, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22995170

RESUMEN

Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates.


Asunto(s)
Biomasa , Microalgas/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Electroforesis en Gel de Poliacrilamida , Células Eucariotas , Filogenia , Reacción en Cadena de la Polimerasa , Células Procariotas
20.
Sci Total Environ ; 435-436: 188-201, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22854090

RESUMEN

Increasing dissolved organic carbon (DOC) concentrations in lakes, rivers and streams in northern mid latitudes have been widely reported during the last two decades, but relatively few studies have dealt with trends in DOC export. We studied the export of DOC from Finnish rivers to the Baltic Sea between 1975 and 2010, and estimated trends in DOC fluxes (both flow normalised and non-normalised). The study encompassed the whole Finnish Baltic Sea catchment area (301,000 km(2)) covering major land use patterns in the boreal zone. Finnish rivers exported annually over 900,000 t DOC to the Baltic Sea, and the mean area specific export was 3.5 t km(-2). The highest export (7.3t km(-2)) was measured in peat dominated catchments, whereas catchments rich in lakes had the lowest export (2.2 t km(-2)). Inter-annual variation in DOC export was high and controlled mainly by hydrology. There was no overall trend in the annual water flow, although winter flow increased in northern Finland over 36 years. Despite the numerous studies showing increases in DOC concentrations in streams and rivers in the northern hemisphere, we could not find any evidence of increases in DOC export to the northern Baltic Sea from Finnish catchments since 1975.


Asunto(s)
Carbono/química , Ríos/química , Países Bálticos , Finlandia , Hidrología , Océanos y Mares , Estaciones del Año , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA