Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chemosphere ; 271: 129506, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33445017

RESUMEN

Nanostructured photocatalysts have always offered opportunities to solve issues concerned with the environmental challenges caused by rapid urbanization and industrialization. These materials, due to their tunable physicochemical characteristics, are capable of providing a clean and sustainable ecosystem to humanity. One of the current thriving research focuses of visible-light-driven photocatalysts is on the nanocomposites of titanium dioxide (TiO2) with carbon nanostructures, especially graphene. Coupling TiO2 with graphene has proven more active by photocatalysis than TiO2 alone. It is generally considered that graphene sheets act as an electron acceptor facilitating the transfer and separation of photogenerated electrons during TiO2 excitation, thereby reducing electron-hole recombination. This study briefly reviews the fundamental mechanism and interfacial charge-transfer dynamics in TiO2/graphene nanocomposites. Design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties. Importantly, the enhancing interfacial charge transfer of photogenerated e¯CB through the graphene layers by morphology orientation of TiO2, predominated exposure of their high energy crystal facets, defect engineering, enhancing catalytic sites in graphene, constructing dedicated architectures, tuning the nanomaterial dimensionality at the interface, and employing the synergism adopted through various modifications, are systematically compiled. Portraying the significance of these photocatalytic hybrids in environmental remediation, important applications including air and water purification, self-cleaning surfaces, H2 production, and CO2 reduction to desired fuels, are addressed.


Asunto(s)
Grafito , Catálisis , Ecosistema , Titanio
2.
J Hazard Mater ; 404(Pt B): 124082, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069994

RESUMEN

Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.


Asunto(s)
Peróxido de Hidrógeno/química , Hierro/química , Luz , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Catálisis , Desinfección , Sustancias Húmicas/análisis , Estructuras Metalorgánicas/química , Minerales/química , Oxidación-Reducción , Fotoquímica , Especies Reactivas de Oxígeno/química , Aguas Residuales/química , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA