Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Clin Diabetes Healthc ; 5: 1393309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165660

RESUMEN

Background: Diabetic foot infection represents a significant complication of diabetes mellitus, contributing substantially to morbidity, mortality, and healthcare expenditure worldwide. Accurate diagnosis relies on a comprehensive assessment integrating clinical evaluation, imaging studies, and microbiological analysis. Management necessitates a multidisciplinary approach, encompassing surgical intervention, antimicrobial therapy, and advanced wound care strategies. Preventive measures are paramount in reducing the incidence and severity, emphasizing patient education, regular foot screenings, and early intervention. Methods: The researchers performed a systematic review of literature using PUBMED MESH keywords. Additionally, the study was registered in the International Prospective Register of Systematic Reviews at the Center for Reviews and Dissemination, University of York (CRD42021277788). This review provides a comprehensive overview of the microbial spectrum and antibiotic susceptibility patterns observed in diabetic foot infections. Results: The search through the databases finally identified 13 articles with 2545 patients from 2021 to 2023. Overall, the predominant Gram-positive microbial species isolated were Staphylococcus aureus, Enterococcus fecalis, Streptococcus pyogenes, Streptococcus agalactiae, and Staphylococcus epidermidis. Whereas the predominant Gram-negative included Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa. Conclusion: Diabetic foot infections represent a complex and multifaceted clinical entity, necessitating a holistic approach to diagnosis, management, and prevention. Limited high-quality research data on outcomes and the effectiveness of guideline recommendations pose challenges in updating and refining existing DFI management guidelines. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021277788, identifier CRD42021277788.

2.
Pharm Res ; 39(11): 2951-2963, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35799081

RESUMEN

Lipocalin-type prostaglandin D synthase was previously known as ß-trace protein (BTP), a low-molecular-weight glycoprotein that is heavily expressed in human cerebrospinal fluid. Nevertheless, it is also seen to be expressed in numerous other tissues including the kidney, liver, lung, heart, adipose, muscle, and pancreas. Functionally, L-PGDS behaves like a lipocalin type protein where it helps in binding and transportation of small lipophilic substances, such as steroids, retinoids, and other lipophilic ligands. Enzymatically, L-PGDS functions as a prostaglandin synthase where it helps in the production of PGD2 by catalyzing the isomerization of PGH2, a common precursor of the two series of prostaglandins. PGD2 regulates its physiological function through two individual receptors named DP1 and DP2. L-PGDS has been a central player in many diseases, its role in metabolism including diabetes, fatty liver disease, and obesity has gathered a large attention. In this review, we summarize the current state of knowledge about L-PGDS and it's signaling in adipose, hepatic, skeletal muscle, and pancreas tissues, which are core targets for metabolic studies. Modulation of L-PGDS signaling can be considered as a potential future therapeutic target for the treatment of insulin resistance as well as fatty liver disease.


Asunto(s)
Hepatopatías , Prostaglandina D2 , Humanos , Prostaglandina D2/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA