Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.008
Filtrar
1.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091796

RESUMEN

The corpus callosum (CC) is the largest set of white matter fibers connecting the two hemispheres of the brain. In humans, it is essential for coordinating sensorimotor responses, performing associative/executive functions, and representing information in multiple dimensions. Understanding which genetic variants underpin corpus callosum morphometry, and their shared influence on cortical structure and susceptibility to neuropsychiatric disorders, can provide molecular insights into the CC's role in mediating cortical development and its contribution to neuropsychiatric disease. To characterize the morphometry of the midsagittal corpus callosum, we developed a publicly available artificial intelligence based tool to extract, parcellate, and calculate its total and regional area and thickness. Using the UK Biobank (UKB) and the Adolescent Brain Cognitive Development study (ABCD), we extracted measures of midsagittal corpus callosum morphometry and performed a genome-wide association study (GWAS) meta-analysis of European participants (combined N = 46,685). We then examined evidence for generalization to the non-European participants of the UKB and ABCD cohorts (combined N = 7,040). Post-GWAS analyses implicate prenatal intracellular organization and cell growth patterns, and high heritability in regions of open chromatin, suggesting transcriptional activity regulation in early development. Results suggest programmed cell death mediated by the immune system drives the thinning of the posterior body and isthmus. Global and local genetic overlap, along with causal genetic liability, between the corpus callosum, cerebral cortex, and neuropsychiatric disorders such as attention-deficit/hyperactivity and bipolar disorders were identified. These results provide insight into variability of corpus callosum development, its genetic influence on the cerebral cortex, and biological mechanisms related to neuropsychiatric dysfunction.

2.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39102518

RESUMEN

A large range of sophisticated brain image analysis tools have been developed by the neuroscience community, greatly advancing the field of human brain mapping. Here we introduce the Computational Anatomy Toolbox (CAT)-a powerful suite of tools for brain morphometric analyses with an intuitive graphical user interface but also usable as a shell script. CAT is suitable for beginners, casual users, experts, and developers alike, providing a comprehensive set of analysis options, workflows, and integrated pipelines. The available analysis streams-illustrated on an example dataset-allow for voxel-based, surface-based, and region-based morphometric analyses. Notably, CAT incorporates multiple quality control options and covers the entire analysis workflow, including the preprocessing of cross-sectional and longitudinal data, statistical analysis, and the visualization of results. The overarching aim of this article is to provide a complete description and evaluation of CAT while offering a citable standard for the neuroscience community.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Biología Computacional/métodos , Neuroimagen/métodos
3.
Environ Health Perspect ; 132(7): 77006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028627

RESUMEN

BACKGROUND: Increased exposure to ambient air pollution, especially fine particulate matter ≤2.5µm (PM2.5) is associated with poorer brain health and increased risk for Alzheimer's disease (AD) and related dementias. The locus coeruleus (LC), located in the brainstem, is one of the earliest regions affected by tau pathology seen in AD. Its diffuse projections throughout the brain include afferents to olfactory areas that are hypothesized conduits of cerebral particle deposition. Additionally, extensive contact of the LC with the cerebrovascular system may present an additional route of exposure to environmental toxicants. OBJECTIVE: Our aim was to investigate if exposure to PM2.5 was associated with LC integrity in a nationwide sample of men in early old age, potentially representing one pathway through which air pollution can contribute to increased risk for AD dementia. METHODS: We examined the relationship between PM2.5 and in vivo magnetic resonance imaging (MRI) estimates of LC structural integrity indexed by contrast to noise ratio (LCCNR) in 381 men [mean age=67.3; standard deviation (SD)=2.6] from the Vietnam Era Twin Study of Aging (VETSA). Exposure to PM2.5 was taken as a 3-year average over the most recent period for which data were available (average of 5.6 years prior to the MRI scan). We focused on LCCNR in the rostral-middle portion of LC due to its stronger associations with aging and AD than the caudal LC. Associations between PM2.5 exposures and LC integrity were tested using linear mixed effects models adjusted for age, scanner, education, household income, and interval between exposure and MRI. A co-twin control analysis was also performed to investigate whether associations remained after controlling for genetic confounding and rearing environment. RESULTS: Multiple linear regressions revealed a significant association between PM2.5 and rostral-middle LCCNR (ß=-0.16; p=0.02), whereby higher exposure to PM2.5 was associated with lower LCCNR. A co-twin control analysis found that, within monozygotic pairs, individuals with higher PM2.5 exposure showed lower LCCNR (ß=-0.11; p=0.02), indicating associations were not driven by genetic or shared environmental confounds. There were no associations between PM2.5 and caudal LCCNR or hippocampal volume, suggesting a degree of specificity to the rostral-middle portion of the LC. DISCUSSION: Given previous findings that loss of LC integrity is associated with increased accumulation of AD-related amyloid and tau pathology, impacts on LC integrity may represent a potential pathway through which exposure to air pollution increases AD risk. https://doi.org/10.1289/EHP14344.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Locus Coeruleus , Imagen por Resonancia Magnética , Material Particulado , Humanos , Masculino , Anciano , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/efectos adversos , Envejecimiento , Persona de Mediana Edad , Enfermedad de Alzheimer
4.
Front Neurosci ; 18: 1387196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015378

RESUMEN

Abnormal ß-amyloid (Aß) accumulation in the brain is an early indicator of Alzheimer's disease (AD) and is typically assessed through invasive procedures such as PET (positron emission tomography) or CSF (cerebrospinal fluid) assays. As new anti-Alzheimer's treatments can now successfully target amyloid pathology, there is a growing interest in predicting Aß positivity (Aß+) from less invasive, more widely available types of brain scans, such as T1-weighted (T1w) MRI. Here we compare multiple approaches to infer Aß + from standard anatomical MRI: (1) classical machine learning algorithms, including logistic regression, XGBoost, and shallow artificial neural networks, (2) deep learning models based on 2D and 3D convolutional neural networks (CNNs), (3) a hybrid ANN-CNN, combining the strengths of shallow and deep neural networks, (4) transfer learning models based on CNNs, and (5) 3D Vision Transformers. All models were trained on paired MRI/PET data from 1,847 elderly participants (mean age: 75.1 yrs. ± 7.6SD; 863 females/984 males; 661 healthy controls, 889 with mild cognitive impairment (MCI), and 297 with Dementia), scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We evaluated each model's balanced accuracy and F1 scores. While further tests on more diverse data are warranted, deep learning models trained on standard MRI showed promise for estimating Aß + status, at least in people with MCI. This may offer a potential screening option before resorting to more invasive procedures.

5.
medRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947056

RESUMEN

Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.

7.
Med Image Anal ; 97: 103231, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38941858

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.

8.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915636

RESUMEN

INTRODUCTION: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. METHODS: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. RESULTS: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. DISCUSSION: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.

9.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915669

RESUMEN

The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce non-biological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61±0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76±0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared to those using GE/Philips scanners for both FA (AICC=0.71±0.12 vs 0.46±0.17, p<0.001) and CT (AICC=0.80±0.10 vs 0.69±0.11, p<0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.

10.
medRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826357

RESUMEN

Our genetic makeup, together with environmental and social influences, shape our brain's development. Yet, the imaging genetics field has struggled to integrate all these modalities to investigate the interplay between genetic blueprint, environment, human health, daily living skills and outcomes. Hence, we interrogated the Adolescent Brain Cognitive Development (ABCD) cohort to outline the effects of rare high-effect genetic variants on brain architecture and corresponding implications on cognitive, behavioral, psychosocial, and socioeconomic traits. Specifically, we designed a holistic pattern-learning algorithm that quantitatively dissects the impacts of copy number variations (CNVs) on brain structure and 962 behavioral variables spanning 20 categories in 7,657 adolescents. Our results reveal associations between genetic alterations, higher-order brain networks, and specific parameters of the family well-being (increased parental and child stress, anxiety and depression) or neighborhood dynamics (decreased safety); effects extending beyond the impairment of cognitive ability or language capacity, dominantly reported in the CNV literature. Our investigation thus spotlights a far-reaching interplay between genetic variation and subjective life quality in adolescents and their families.

11.
Ann Neurol ; 96(2): 365-377, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38845484

RESUMEN

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios de Cohortes , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anciano , Envejecimiento/patología , Envejecimiento Prematuro/diagnóstico por imagen , Envejecimiento Prematuro/patología
12.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739784

RESUMEN

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Asunto(s)
Plumas , Mercurio , Animales , Mercurio/análisis , Océano Atlántico , Plumas/química , Regiones Árticas , Groenlandia , Monitoreo del Ambiente/métodos , Aves , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Ecosistema
13.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712293

RESUMEN

Introduction: Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods: Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results: In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion: We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38584725

RESUMEN

We introduce an informative metric, called morphometric correlation, as a measure of shared neuroanatomic similarity between two cognitive traits. Traditional estimates of trait correlations can be confounded by factors beyond brain morphology. To exclude these confounding factors, we adopt a Gaussian kernel to measure the morphological similarity between individuals and compare pure neuroanatomic correlations among cognitive traits. In our empirical study, we employ a multiscale strategy. Given a set of cognitive traits, we first perform morphometric correlation analysis for each pair of traits to reveal their shared neuroanatomic correlation at the whole brain (or global) level. After that, we extend our whole brain concept to regional morphometric correlation and estimate shared neuroanatomic similarity between two cognitive traits at the regional (or local) level. Our results demonstrate that morphometric correlation can provide insights into shared neuroanatomic architecture between cognitive traits. Furthermore, we also estimate the morphometricity of each cognitive trait at both global and local levels, which can be used to better understand how neuroanatomic changes influence individuals' cognitive status.

17.
iScience ; 27(3): 109212, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433927

RESUMEN

Traditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified training sample without adequately considering its distance from the ground truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS framework with a neural network to classify different stages of Alzheimer's disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural network loss functions and is comparable or better to traditional machine learning methods, highlighting its potential in biomedical informatics and data science.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38554248

RESUMEN

Neuroimaging has provided important insights into the brain variations related to mental illness. Inconsistencies in prior studies, however, call for methods that lead to more replicable and generalizable brain markers that can reliably predict illness severity, treatment course, and prognosis. A paradigm shift is underway with large-scale international research teams actively pooling data and resources to drive consensus findings and test emerging methods aimed at achieving the goals of precision psychiatry. In parallel with large-scale psychiatric genomics studies, international consortia combining neuroimaging data are mapping the transdiagnostic brain signatures of mental illness on an unprecedented scale. This chapter discusses the major challenges, recent findings, and a roadmap for developing better neuroimaging-based tools and markers for mental illness.

19.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521789

RESUMEN

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Humanos , Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/fisiología , Análisis de la Aleatorización Mendeliana
20.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463962

RESUMEN

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA