RESUMEN
Pseudomonas aeruginosa (PA) infection can cause pneumonia and sepsis by activating peptidyl-arginine deiminase (PAD) and triggering the formation of neutrophil extracellular traps (NETs). Our previous research has elucidated the crucial role of PAD2 in regulating CitH3 production and NETosis signaling following bacterial infection. Therefore, targeting PAD2 with selective inhibitors holds promise for treating PA-induced sepsis. Here, we compare the structure and function of two PAD2 inhibitors, AFM32a and AFM41a, and investigate their biological effects in mice subjected with PA. We analyze their impact on PAD2 inhibition, macrophage polarization, and other host defense mechanisms against PA-induced sepsis utilizing both in vivo and in vitro approaches. Our findings demonstrate that both PAD2 inhibitors (AFM32a and AFM41a) and Pad2 deficiency substantially enhance protection against PA-induced sepsis, with AFM41a showing superior efficacy over AFM32a. This protective effect is marked by improved survival rates, reduced bacterial growth in mice subjected to PA infection, and the promotion of M2 macrophage polarization coupled with enhanced autophagic activity. Our results advocate for targeting PAD2 as an effective strategy to bolster host defenses against PA infection. Utilizing AFM41a to promote M2 macrophage polarization and autophagy offers promising avenues for the treatment of PA infection and the improvement of sepsis outcomes.
Asunto(s)
Sepsis , Animales , Sepsis/tratamiento farmacológico , Ratones , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/efectos de los fármacos , Macrófagos/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , MasculinoRESUMEN
Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.
Asunto(s)
Diferenciación Celular , Proteínas Cromosómicas no Histona , Histonas , Mioblastos , Piruvato Quinasa , Animales , Humanos , Ratones , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Histonas/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Mioblastos/metabolismo , Mioblastos/citología , Fosforilación , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejos Multiproteicos/metabolismoRESUMEN
CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.
Asunto(s)
Aciltransferasas , Antígeno CD24 , Neoplasias Ováricas , Fagocitosis , Animales , Femenino , Humanos , Ratones , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Antígeno CD24/metabolismo , Línea Celular Tumoral , Glicosilfosfatidilinositoles/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapiaRESUMEN
Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, Pkm1 and Pkm2, function in glycolysis, but Pkm2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of Pkm1 and Pkm2 during myoblast differentiation. RNA-seq analysis revealed that Pkm2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. Dpf2 and Baf250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for activation of myogenic gene expression during differentiation. Pkm2 also mediated the incorporation of Dpf2 and Baf250a into the regulatory sequences controlling myogenic gene expression. Pkm1 did not affect expression but was required for nuclear localization of Dpf2. Additionally, Pkm2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters, but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for Pkm2 and a novel function for Pkm1 in gene expression and chromatin regulation during myoblast differentiation.
RESUMEN
Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LßT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of ß-actin, with elevated levels occurring at 10 min. The level of ß-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of ß-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of ß-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LßT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells.
Asunto(s)
Actinas , Citrulinación , Ratones , Animales , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Citrulina/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hidrolasas/metabolismoRESUMEN
Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Citrulinación , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Gliosis/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Proteínas de la Mielina/metabolismo , Vaina de Mielina/patología , Agregado de Proteínas , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Proteínas/metabolismo , Médula Espinal/patologíaRESUMEN
Introduction: MZB1 is an endoplasmic reticulum residential protein preferentially expressed in plasma cells, marginal zone and B1 B cells. Recent studies on murine B cells show that it interacts with the tail piece of IgM and IgA heavy chain and promotes the secretion of these two classes of immunoglobulin. However, its role in primary human B cells has yet to be determined and how its function is regulated is still unknown. The conversion of peptidylarginine to peptidylcitrulline, also known as citrullination, by peptidylarginine deiminases (PADs) can critically influence the function of proteins in immune cells, such as neutrophils and T cells; however, the role of PADs in B cells remains to be elucidated. Method: An unbiased analysis of human lung citrullinome was conducted to identify citrullinated proteins that are enriched in several chronic lung diseases, including rheumatoid arthritis-associated interstitial lung disease (RA-ILD), chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis, compared to healthy controls. Mass spectrometry, site-specific mutagenesis, and western blotting were used to confirm the citrullination of candidate proteins. Their citrullination was suppressed by pharmacological inhibition or genetic ablation of PAD2 and the impact of their citrullination on the function and differentiation of human B cells was examined with enzyme-linked immunosorbent assay, flow cytometry, and co-immunoprecipitation. Results: Citrullinated MZB1 was preferentially enriched in RA-ILD but not in other chronic lung diseases. MZB1 was a substrate of PAD2 and was citrullinated during the differentiation of human plasmablasts. Ablation or pharmacological inhibition of PAD2 in primary human B cells attenuated the secretion of IgM and IgA but not IgG or the differentiation of IgM or IgA-expressing plasmablasts, recapitulating the effect of ablating MZB1. Furthermore, the physical interaction between endogenous MZB1 and IgM/IgA was attenuated by pharmacological inhibition of PAD2. Discussion: Our data confirm the function of MZB1 in primary human plasmablasts and suggest that PAD2 promotes IgM/IgA secretion by citrullinating MZB1, thereby contributing to the pathogenesis of rheumatoid arthritis and RA-ILD.
Asunto(s)
Artritis Reumatoide , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Ratones , Animales , Desiminasas de la Arginina Proteica/genética , Proteínas/metabolismo , Inmunoglobulina A , Inmunoglobulina MRESUMEN
Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.
Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Citrulinación , Factores de Restricción Antivirales , Proteínas Virales/metabolismo , Replicación Viral , Antivirales/farmacología , Antivirales/metabolismoRESUMEN
Neutrophil extracellular traps (NETs) not only counteract bacterial and fungal pathogens but can also promote thrombosis, autoimmunity, and sterile inflammation. The presence of citrullinated histones, generated by the peptidylarginine deiminase 4 (PAD4), is synonymous with NETosis and is considered independent of apoptosis. Mitochondrial- and death receptor-mediated apoptosis promote gasdermin E (GSDME)-dependent calcium mobilization and membrane permeabilization leading to histone H3 citrullination (H3Cit), nuclear DNA extrusion, and cytoplast formation. H3Cit is concentrated at the promoter in bone marrow neutrophils and redistributes in a coordinated process from promoter to intergenic and intronic regions during apoptosis. Loss of GSDME prevents nuclear and plasma membrane disruption of apoptotic neutrophils but prolongs early apoptosis-induced cellular changes to the chromatin and cytoplasmic granules. Apoptotic signaling engages PAD4 in neutrophils, establishing a cellular state that is primed for NETosis, but that occurs only upon membrane disruption by GSDME, thereby redefining the end of life for neutrophils.
Asunto(s)
Trampas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Trampas Extracelulares/genética , Trampas Extracelulares/metabolismo , Histonas/metabolismo , Epigénesis GenéticaRESUMEN
Protein citrullination is a post-translational modification (PTM) that is catalysed by the protein arginine deiminase (PAD) family of enzymes. This PTM involves the transformation of an arginine residue into citrulline. Protein citrullination is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation and DNA damage-induced apoptosis. Aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis (RA), lupus, atherosclerosis and ulcerative colitis. In RA, anti-citrullinated protein antibodies can be detected prior to disease onset and are thus a valuable diagnostic tool for RA. Notably, citrullinated proteins may serve more generally as biomarkers of specific disease states; however, the identification of citrullinated protein residues remains challenging owing to the small 1 Da mass change that occurs upon citrullination. Herein, we highlight the progress made so far in the development of pan-PAD and isozyme selective inhibitors as well as the identification of citrullinated proteins and the site-specific incorporation of citrulline into proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Asunto(s)
Artritis Reumatoide , Citrulinación , Humanos , Citrulina/genética , Citrulina/metabolismo , Epigénesis Genética , Proteínas/genética , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Drug resistance is still a big challenge for cancer patients. We previously demonstrated that inhibiting peptidylarginine deiminase 2 (PADI2) enzyme activity with Cl-amine increases the efficacy of docetaxel (Doc) on tamoxifen-resistant breast cancer cells with PADI2 expression. However, it is not clear whether this effect applies to other tumour cells. Here, we collected four types of tumour cells with different PADIs expression and fully evaluated the inhibitory effect of the combination of PADIs inhibitor (BB-Cla) and Doc in vitro and in vivo on tumour cell growth. Results show that inhibiting PADIs combined with Doc additively inhibits tumour cell growth across the four tumour cells. PADI2-catalysed citrullination of MEK1 Arg 189 exists in the four tumour cells, and blocking the function of MEK1 Cit189 promotes the anti-tumour effect of Doc in these tumour cells. Further analysis shows that inhibiting MEK1 Cit189 decreases the expression of cancer cell stemness factors and helps prevent cancer cell stemness maintenance. Importantly, this combined treatment can partially restore the sensitivity of chemotherapy-resistant cells to docetaxel or cisplatin in tumour cells. Thus, our study provides an experimental basis for the combined therapeutic approaches using docetaxel- and PADIs inhibitors-based strategies in tumour treatment. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Asunto(s)
Antineoplásicos , Citrulinación , Docetaxel , Resistencia a Antineoplásicos , MAP Quinasa Quinasa 1 , Humanos , Docetaxel/farmacología , Tamoxifeno , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Antineoplásicos/farmacologíaRESUMEN
The cGMP-AMP Synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway plays a critical role in sensing dsDNA localized to the cytosol, resulting in the activation of a robust inflammatory response. While cGAS-STING signaling is essential for antiviral immunity, aberrant STING activation is observed in amyotrophic lateral sclerosis (ALS), lupus, and autoinflammatory diseases such as Aicardi-Goutières syndrome (AGS) and STING associated vasculopathy with onset in infancy (SAVI). Significant efforts have therefore focused on the development of STING inhibitors. In a concurrent submission, we reported that BB-Cl-amidine inhibits STING-dependent signaling in the nanomolar range, both in vitro and in vivo. Considering this discovery, we sought to generate analogs with higher potency and proteome-wide selectivity. Herein, we report the development of LB244, which displays nanomolar potency and inhibits STING signaling with markedly enhanced proteome-wide selectivity. Moreover, LB244 mirrored the efficacy of BB-Cl-amidine in vivo. In summary, our data identify novel chemical entities that inhibit STING signaling and provide a scaffold for the development of therapeutics for treating STING-dependent inflammatory diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Autoinmunes del Sistema Nervioso , Humanos , Proteoma , Antivirales , GMP Cíclico , NucleotidiltransferasasRESUMEN
Stimulator of interferon genes (STING) is an essential adaptor protein required for the inflammatory response to cytosolic DNA. dsDNA activates cGAS to generate cGAMP, which binds and activates STING triggering a conformational change, oligomerization, and the IRF3- and NFκB-dependent transcription of type I Interferons (IFNs) and inflammatory cytokines, as well as the activation of autophagy. Aberrant activation of STING is now linked to a growing number of both rare as well as common chronic inflammatory diseases. Here, we identify and characterize a potent small-molecule inhibitor of STING. This compound, BB-Cl-amidine inhibits STING signaling and production of type I IFNs, IFN-stimulated genes (ISGs) and NFκB-dependent cytokines, but not other pattern recognition receptors. In vivo, BB-Cl-amidine alleviated pathology resulting from accrual of cytosolic DNA in Trex-1 mutant mice. Mechanistically BB-Cl-amidine inhibited STING oligomerization through modification of Cys148. Collectively, our work uncovers an approach to inhibit STING activation and highlights the potential of this strategy for the treatment of STING-driven inflammatory diseases.
Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , FN-kappa B/metabolismo , ADNRESUMEN
Sterile alpha and toll/interleukin receptor (TIR) motif containing protein 1 (SARM1) is an NAD+ hydrolase and cyclase involved in axonal degeneration. In addition to NAD+ hydrolysis and cyclization, SARM1 catalyzes a base exchange reaction between nicotinic acid (NA) and NADP+ to generate NAADP, which is a potent calcium signaling molecule. Herein, we describe efforts to characterize the hydrolysis, cyclization, and base exchange activities of TIR-1, the Caenorhabditis elegans ortholog of SARM1; TIR-1 also catalyzes NAD(P)+ hydrolysis and/or cyclization and regulates axonal degeneration in worms. We show that the catalytic domain of TIR-1 undergoes a liquid-to-solid phase transition that regulates not only the hydrolysis and cyclization reactions but also the base exchange reaction. We define the substrate specificities of the reactions, demonstrate that cyclization and base exchange reactions occur within the same pH range, and establish that TIR-1 uses a ternary complex mechanism. Overall, our findings will aid drug discovery efforts and provide insight into the mechanism of recently described inhibitors.
Asunto(s)
Axones , NAD , Animales , Axones/metabolismo , NAD/metabolismo , Dominio Catalítico , Caenorhabditis elegans/metabolismoRESUMEN
In brief: DGCR8 microprocessor complex, which is important for miRNA biogenesis, is regulated by peptidylarginine deiminase 2 and expression fluctuates in gonadotrope cells across the mouse estrous cycle. Abstract: Canonical miRNA biogenesis requires DGCR8 microprocessor complex subunit, which helps cleave pri-miRNAs into pre-miRNAs. Previous studies found that inhibiting peptidylarginine deiminase (PAD) enzyme activity results in increased DGCR8 expression. PADs are expressed in mouse gonadotrope cells, which play a central role in reproduction by synthesizing and secreting the luteinizing and follicle stimulating hormones. Given this, we tested whether inhibiting PADs alters expression of DGCR8, DROSHA, and DICER in the gonadotrope-derived LßT2 cell line. To test this, LßT2 cells were treated with vehicle or 1 µM pan-PAD inhibitor for 12 h. Our results show that PAD inhibition leads to an increase in DGCR8 mRNA and protein. To corroborate our results, dispersed mouse pituitaries were also treated with 1 µM pan-PAD inhibitor for 12 h which increases DGCR8 expression in gonadotropes. Since PADs epigenetically regulate gene expression, we hypothesized that histone citrullination alters Dgcr8 expression thereby affecting miRNA biogenesis. LßT2 samples were subjected to ChIP using an antibody to citrullinated histone H3, which shows that citrullinated histones are directly associated with Dgcr8. Next, we found that when DGCR8 expression is elevated in LßT2 cells, pri-miR-132 and -212 are reduced, while mature miR-132 and -212 are increased suggesting heightened miRNA biogenesis. In mouse gonadotropes, DGCR8 expression is higher in diestrus as compared to estrus, which is the inverse of PAD2 expression. Supporting this idea, treatment of ovariectomized mice with 17ß-estradiol results in an increase in PAD2 expression in gonadotropes with a corresponding decrease in DGCR8. Collectively, our work suggests that PADs regulate DGCR8 expression leading to changes in miRNA biogenesis in gonadotropes.
Asunto(s)
MicroARNs , Animales , Femenino , Ratones , Núcleo Celular/metabolismo , Histonas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Protein citrullination is a post-translational modification of arginine that controls a diverse array of cellular processes, including gene regulation, protein stability, and neutrophil extracellular trap (NET) formation. Histone citrullination promotes chromatin decondensation and NET formation, a pro-inflammatory form of cell death that is aberrantly increased in numerous immune disorders. This review will provide insights into NETosis and how this novel form of cell death contributes to inflammatory diseases, with a particular emphasis on its role in thrombosis. We will also discuss recent efforts to develop PAD-specific inhibitors.
Asunto(s)
Trampas Extracelulares , Trombosis , Humanos , Citrulinación , Trampas Extracelulares/metabolismo , Cromatina/metabolismo , Procesamiento Proteico-Postraduccional , Trombosis/metabolismoRESUMEN
Given the current impact of SARS-CoV2 and COVID-19 on human health and the global economy, the development of direct acting antivirals is of paramount importance. Main protease (MPro), a cysteine protease that cleaves the viral polyprotein, is essential for viral replication. Therefore, MPro is a novel therapeutic target. We identified two novel MPro inhibitors, D-FFRCMKyne and D-FFCitCMKyne, that covalently modify the active site cysteine (C145) and determined cocrystal structures. Medicinal chemistry efforts led to SM141 and SM142, which adopt a unique binding mode within the MPro active site. Notably, these inhibitors do not inhibit the other cysteine protease, papain-like protease (PLPro), involved in the life cycle of SARS-CoV2. SM141 and SM142 block SARS-CoV2 replication in hACE2 expressing A549 cells with IC50 values of 8.2 and 14.7 nM. Detailed studies indicate that these compounds also inhibit cathepsin L (CatL), which cleaves the viral S protein to promote viral entry into host cells. Detailed biochemical, proteomic, and knockdown studies indicate that the antiviral activity of SM141 and SM142 results from the dual inhibition of MPro and CatL. Notably, intranasal and intraperitoneal administration of SM141 and SM142 lead to reduced viral replication, viral loads in the lung, and enhanced survival in SARS-CoV2 infected K18-ACE2 transgenic mice. In total, these data indicate that SM141 and SM142 represent promising scaffolds on which to develop antiviral drugs against SARS-CoV2.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C Crónica , Animales , Ratones , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Proteasas 3C de Coronavirus , Catepsina L/química , Catepsina L/metabolismo , ARN Viral , SARS-CoV-2 , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/química , Péptido Hidrolasas , Proteómica , Proteínas no Estructurales Virales/química , Simulación del Acoplamiento MolecularRESUMEN
Phomoxanthone A is a naturally occurring molecule and a powerful anti-cancer agent, although its mechanism of action is unknown. To facilitate the determination of its biological target(s), we used affinity-based labelling using a phomoxanthone A probe. Labelled proteins were pulled down, subjected to chemoproteomics analysis using LC-MS/MS and ATP synthase was identified as a likely target. Mitochondrial ATP synthase was validated in cultured cells lysates and in live intact cells. Our studies show sixty percent inhibition of ATP synthase by 260â µM phomoxanthoneâ A.
Asunto(s)
ATPasas de Translocación de Protón Mitocondriales , Espectrometría de Masas en Tándem , Cromatografía Liquida , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Marcadores de Afinidad , Adenosina Trifosfato/metabolismoRESUMEN
Increased protein citrullination (PC) and dysregulated protein arginine deiminase (PAD) activity have been observed in several neurodegenerative diseases. PC is a posttranslational modification catalyzed by the PADs. PC converts peptidyl-arginine to peptidyl-citrulline, thereby reducing the positive charges and altering structure and function of proteins. Of the five PADs, PAD2 is the dominant isoform in the central nervous system (CNS). Abnormal PC and PAD dysregulation are associated with numerous pathological conditions, including inflammatory diseases and neurodegeneration. Animal model studies have shown therapeutic efficacy from inhibition of PADs, thus suggesting a role of PC in pathogenesis. To determine whether PC contribute to amyotrophic lateral sclerosis (ALS), a deadly neurodegenerative disease characterized by loss of motor neurons, paralysis, and eventual death, we investigated alterations of PC and PAD2 in two different transgenic mouse models of ALS expressing human mutant SOD1G93A and PFN1C71G, respectively. PC and PAD2 expression are altered dynamically in the spinal cord during disease progression in both models. PC and PAD2 increase progressively in astrocytes with the development of reactive astrogliosis, while decreasing in neurons. Importantly, in the spinal cord white matter, PC accumulates in protein aggregates that contain the myelin proteins PLP and MBP. PC also accumulates progressively in insoluble protein fractions during disease progression. Finally, increased PC and PAD2 expression spatially correlate with areas of the CNS with the most severe motor neuron degeneration. These results suggest that altered PC is an integral part of the neurodegenerative process and potential biomarkers for disease progression in ALS. Moreover, increased PC may contribute to disease-associated processes such as myelin protein aggregation, myelin degeneration, and astrogliosis.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/patología , Animales , Citrulinación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gliosis/patología , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Proteínas de la Mielina , Vaina de Mielina/patología , Enfermedades Neurodegenerativas/patología , Profilinas/metabolismo , Agregado de Proteínas , Médula Espinal/patología , Superóxido Dismutasa/genéticaRESUMEN
BACKGROUND: Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS: To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb ß 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS: Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb ß 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb ß 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the ß 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb ß 3 activity in vitro. CONCLUSIONS: Carbamylation of α IIb ß 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb ß 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.