Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Phys Chem B ; 128(19): 4783-4791, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38703113

RESUMEN

Carbon dioxide-expanded liquids, organic solvents with high concentrations of soluble carbon dioxide (CO2) at mild pressures, have gained attention as green catalytic media due to their improved properties over traditional solvents. More recently, carbon dioxide-expanded electrolytes (CXEs) have demonstrated improved reaction rates in the electrochemical reduction of CO2, by increasing the rate of delivery of CO2 to the electrode while maintaining facile charge transport. However, recent studies indicate that the limiting behavior of CXEs at higher CO2 pressures is a decline in solution conductivity due to reduced polarity, leading to poorer charge screening and greater ion pairing. In this article, we employ molecular dynamics simulations to investigate the energetic driving forces behind the diffusive properties of an acetonitrile and tetrapropylammonium hexafluorophosphate (TPrAPF6) CXE with increasing CO2 concentration. Our results indicate that entropy drives solvent and electrolyte diffusion with increasing CO2 pressure. The activation energy of ion diffusion increases with higher concentrations of CO2, indicating that increasing the temperature may improve solution conductivity in these systems. This trend in the activation energies is traced to stronger cation-anion Coulombic interactions due to weaker solvent screening at high CO2 concentrations, suggesting that the choice of ion may provide a route to diminish this effect.

2.
Chem Commun (Camb) ; 60(39): 5213-5216, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38652073

RESUMEN

The E1/2 potential associated with reduction of the linearly-functionalized 6,6'-biazulenic scaffold is accurately correlated to the combined σp Hammett parameters of the substituents over >600 mV range. X-ray crystallographic analysis of the 2,2'-dichloro-substituted derivative revealed unexpectedly short C-Cl bond distances, along with other metric changes, suggesting a non-trivial cycloheptafulvalene-like structural contribution.

3.
Chem Sci ; 15(6): 2197-2204, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332825

RESUMEN

It has long been understood that the structural features of water are determined by hydrogen bonding (H-bonding) and that the exchange of, or "jumps" between, H-bond partners underlies many of the dynamical processes in water. Despite the importance of H-bond exchanges there is, as yet, no direct method for experimentally measuring the timescale of the process or its associated activation energy. Here, we identify and exploit relationships between water's structural and dynamical properties that provide an indirect route for determining the H-bond exchange activation energy from experimental data. Specifically, we show that the enthalpy and entropy determining the radial distribution function in liquid water are linearly correlated with the activation energies for H-bond jumps, OH reorientation, and diffusion. Using temperature-dependent measurements of the radial distribution function from the literature, we demonstrate how these correlations allow us to infer the value of the jump activation energy, Ea,0, from experimental results. This analysis gives Ea,0 = 3.43 kcal mol-1, which is in good agreement with that predicted by the TIP4P/2005 water model. We also illustrate other approaches for estimating this activation energy consistent with these estimates.

4.
J Am Chem Soc ; 146(4): 2398-2410, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252883

RESUMEN

Electrolyte conductivity contributes to the efficiency of devices for electrochemical conversion of carbon dioxide (CO2) into useful chemicals, but the effect of the dissolution of CO2 gas on conductivity has received little attention. Here, we report a joint experimental-theoretical study of the properties of acetonitrile-based CO2-expanded electrolytes (CXEs) that contain high concentrations of CO2 (up to 12 M), achieved by CO2 pressurization. Cyclic voltammetry data and paired simulations show that high concentrations of dissolved CO2 do not impede the kinetics of outer-sphere electron transfer but decrease the solution conductivity at higher pressures. In contrast with conventional behaviors, Jones reactor-based measurements of conductivity show a nonmonotonic dependence on CO2 pressure: a plateau region of constant conductivity up to ca. 4 M CO2 and a region showing reduced conductivity at higher [CO2]. Molecular dynamics simulations reveal that while the intrinsic ionic strength decreases as [CO2] increases, there is a concomitant increase in ionic mobility upon CO2 addition that contributes to stable solution conductivities up to 4 M CO2. Taken together, these results shed light on the mechanisms underpinning electrolyte conductivity in the presence of CO2 and reveal that the dissolution of CO2, although nonpolar by nature, can be leveraged to improve mass transport rates, a result of fundamental and practical significance that could impact the design of next-generation systems for CO2 conversion. Additionally, these results show that conditions in which ample CO2 is available at the electrode surface are achievable without sacrificing the conductivity needed to reach high electrocatalytic currents.

5.
J Phys Chem B ; 128(2): 567-575, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38184793

RESUMEN

Many questions remain about the reactions of the hydrated electron despite decades of study. Of particular note is that they do not appear to follow the Marcus theory of electron transfer reactions, a feature that is yet to be explained. To investigate these issues, we used ab initio molecular dynamics (AIMD) simulations to investigate one of the better studied reactions, the hydrated electron reduction of CO2. The rate constant for the hydrated electron-CO2 reaction complex to react to form CO2- is for the first time estimated from AIMD simulations. Results at 298 and 373 K show the rate constant is insensitive to temperature, consistent with the low measured activation energy for the reaction, and the implications of this behavior are examined. The sampling provided by the simulations yields insight into the reaction mechanism. The reaction is found to involve both solvent reorganization and changes in the carbon dioxide structure. The latter leads to significant vibrational excitation of the bending and symmetric stretch vibrations in the CO2- product, indicating the reaction is vibrationally nonadiabatic. The former is estimated from the calculation of an approximate collective solvent coordinate and the free energy in this coordinate is determined. These results indicate that AIMD simulations can reasonably estimate hydrated electron reaction activation energies and provide new insight into the mechanism that can help illuminate the features of this unusual chemistry.

6.
J Phys Chem B ; 127(33): 7361-7371, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37556737

RESUMEN

Mixed quantum-classical molecular dynamics simulations have been important tools for studying the hydrated electron. They generally use a one-electron pseudopotential to describe the interactions of an electron with the water molecules. This approximation shows both the strength and weakness of the approach. On the one hand, it enables extensive statistical sampling and large system sizes that are not possible with more accurate ab initio molecular dynamics methods. On the other hand, there has (justifiably) been much debate about the ability of pseudopotentials to accurately and quantitatively describe the hydrated electron properties. These pseudopotentials have largely been derived by fitting them to ab initio calculations of an electron interacting with a single water molecule. In this paper, we present a proof-of-concept demonstration of an alternative approach in which the pseudopotential parameters are determined by optimizing them to reproduce key experimental properties. Specifically, we develop a new pseudopotential, using the existing TBOpt model as a starting point, which correctly describes the hydrated electron vertical detachment energy and radius of gyration. In addition to these properties, this empirically optimized model displays a significantly modified solvation structure, which improves, for example, the prediction of the partial molar volume.

7.
J Phys Chem B ; 127(26): 5941-5947, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37345987

RESUMEN

It is now generally accepted that the hydrated electron occupies a cavity in water, but the size of the cavity and the arrangements of the solvating water molecules have not been fully characterized. Here, we use the Kirkwood-Buff (KB) approach to examine how the partial molar volume (VM) provides insight into these issues. The KB method relates VM to an integral of the electron-water radial distribution function, a key measure of the hydrated electron structure. We have applied it to three widely used pseudopotentials, and the results show that VM is a sensitive measure of the fidelity of hydrated electron descriptions. Thus, the measured VM places constraints on the hydrated electron structure that are important in developing and evaluating the model descriptions. Importantly, we find that VM does not reflect only the cavity size (and thus should not be used to infer the cavity radius) but is strongly dependent on the extended solvation structure.

8.
Phys Chem Chem Phys ; 25(18): 12820-12832, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37129891

RESUMEN

A Maxwell relation for a reaction rate constant (or other dynamical timescale) obtained under constant pressure, p, and temperature, T, is introduced and discussed. Examination of this relationship in the context of fluctuation theory provides insight into the p and T dependence of the timescale and the underlying molecular origins. This Maxwell relation motivates a suggestion for the general form of the timescale as a function of pressure and temperature. This is illustrated by accurately fitting simulation results and existing experimental data on the self-diffusion coefficient and shear viscosity of liquid water. A key advantage of this approach is that each fitting parameter is physically meaningful.

9.
J Chem Phys ; 158(19)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37191215

RESUMEN

A large number of force fields have been proposed for describing the behavior of liquid water within classical atomistic simulations, particularly molecular dynamics. In the past two decades, models that incorporate molecular polarizability and even charge transfer have become more prevalent, in attempts to develop more accurate descriptions. These are frequently parameterized to reproduce the measured thermodynamics, phase behavior, and structure of water. On the other hand, the dynamics of water is rarely considered in the construction of these models, despite its importance in their ultimate applications. In this paper, we explore the structure and dynamics of polarizable and charge-transfer water models, with a focus on timescales that directly or indirectly relate to hydrogen bond (H-bond) making and breaking. Moreover, we use the recently developed fluctuation theory for dynamics to determine the temperature dependence of these properties to shed light on the driving forces. This approach provides key insight into the timescale activation energies through a rigorous decomposition into contributions from the different interactions, including polarization and charge transfer. The results show that charge transfer effects have a negligible effect on the activation energies. Furthermore, the same tension between electrostatic and van der Waals interactions that is found in fixed-charge water models also governs the behavior of polarizable models. The models are found to involve significant energy-entropy compensation, pointing to the importance of developing water models that accurately describe the temperature dependence of water structure and dynamics.

10.
J Chem Phys ; 158(6): 064507, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792517

RESUMEN

A method for directly calculating the temperature derivative of two-dimensional infrared (2D-IR) spectra from simulations at a single temperature is presented. The approach is demonstrated by application to the OD stretching spectrum of isotopically dilute aqueous (HOD in H2O) solutions of urea as a function of concentration. Urea is an important osmolyte because of its ability to denature proteins, which has motivated significant interest in its effect on the structure and dynamics of water. The present results show that the temperature dependence of both the linear IR and 2D-IR spectra, which report on the underlying energetic driving forces, is more sensitive to urea concentration than the spectra themselves. Additional physical insight is provided by calculation of the contributions to the temperature derivative from different interactions, e.g., water-water, water-urea, and urea-urea, present in the system. Finally, it is demonstrated how 2D-IR spectra at other temperatures can be obtained from only room temperature simulations.

11.
J Phys Chem Lett ; 13(39): 8971-8977, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36136966

RESUMEN

Reactions of the hydrated electron with a wide variety of substrates have been found to exhibit unusually similar activation energies in a manner incompatible with Marcus electron transfer theory. Given the fundamental linear response assumption of Marcus theory, one possible explanation for this apparent failure is that the underlying free energy surfaces governing the reactions are not harmonic; i.e., hydrated electron structural fluctuations exhibit non-Gaussian behavior. In this work, we test this hypothesis by using simulations to calculate the hydrated electron vertical detachment energy distribution. We consider both cavity and noncavity models for the hydrated electron, between which the actual hydrated electron behavior is expected to lie. Our results identify a possible origin for non-Gaussian behavior of the hydrated electron but show that it is not of sufficient magnitude to explain the failure of Marcus theory to describe its reactions. Thus, other explanations must be sought.

12.
J Phys Chem B ; 126(35): 6700-6712, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36004804

RESUMEN

The Hofmeister series is frequently used to rank ions based on their behavior from chaotropes ("structure breakers"), which weaken the surrounding hydrogen-bond network, to kosmotropes ("structure makers"), which enhance it. Here, we use fluctuation theory to investigate the energetic and entropic driving forces underlying the Hofmeister series for aqueous alkali-halide solutions. Specifically, we exploit the OH stretch infrared (IR) spectrum in isotopically dilute HOD/D2O solutions as a probe of the effect of the salt on the water properties for different concentrations and choice of halide anion. Fluctuation theory is used to calculate the temperature derivative of these IR spectra, including decomposition of the derivative into different energetic contributions. These contributions are used to determine the thermodynamic driving forces in terms of effective internal energy and entropic contributions. This analysis implicates entropic contributions as the key factor in the Hofmeister series behavior of the OH stretch IR spectra, while the effective internal energy is nearly ion-independent.


Asunto(s)
Álcalis , Agua , Enlace de Hidrógeno , Iones/química , Soluciones/química , Vibración , Agua/química
13.
J Chem Phys ; 157(3): 034702, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868937

RESUMEN

The structural and dynamical properties of nanoconfined solutions can differ dramatically from those of the corresponding bulk systems. Understanding the changes induced by confinement is central to controlling the behavior of synthetic nanostructured materials and predicting the characteristics of biological and geochemical systems. A key outstanding issue is how the molecular-level behavior of nanoconfined electrolyte solutions is reflected in different experimental, particularly spectroscopic, measurements. This is addressed here through molecular dynamics simulations of the OH stretching infrared (IR) spectroscopy of NaCl, NaBr, and NaI solutions in isotopically dilute HOD/D2O confined in hydroxylated amorphous silica slit pores of width 1-6 nm and pH ∼2. In addition, the water reorientation dynamics and spectral diffusion, accessible by pump-probe anisotropy and two-dimensional IR measurements, are investigated. The aim is to elucidate the effect of salt identity, confinement, and salt concentration on the vibrational spectra. It is found that the IR spectra of the electrolyte solutions are only modestly blue-shifted upon confinement in amorphous silica slit pores, with both the size of the shift and linewidth increasing with the halide size, but these effects are suppressed as the salt concentration is increased. This indicates the limitations of linear IR spectroscopy as a probe of confined water. However, the OH reorientational and spectral diffusion dynamics are significantly slowed by confinement even at the lowest concentrations. The retardation of the dynamics eases with increasing salt concentration and pore width, but it exhibits a more complex behavior as a function of halide.


Asunto(s)
Dióxido de Silicio , Agua , Difusión , Enlace de Hidrógeno , Dióxido de Silicio/química , Cloruro de Sodio , Espectrofotometría Infrarroja/métodos , Agua/química
14.
J Phys Chem Lett ; 13(21): 4660-4666, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35604934

RESUMEN

The self-diffusion of water molecules plays a key part in a broad range of essential processes in biochemistry, medical imaging, material science, and engineering. However, its molecular mechanism and the role played by the water hydrogen-bond network rearrangements are not known. Here we combine molecular dynamics simulations and analytic modeling to determine the molecular mechanism of water diffusion. We establish a quantitative connection between the water diffusion coefficient and hydrogen-bond jump exchanges, and identify the features that determine the underlying energetic barrier. We thus provide a unified framework to understand the coupling between translational, rotational, and hydrogen-bond dynamics in liquid water. It explains why these different dynamics do not necessarily exhibit identical temperature dependences although they all result from the same hydrogen-bond exchange events. The consequences for the understanding of water diffusion in supercooled conditions and for water transport in complex aqueous systems, including ionic, biological, and confined solutions, are discussed.


Asunto(s)
Hidrógeno , Agua , Difusión , Enlace de Hidrógeno , Espectrofotometría Infrarroja/métodos , Agua/química
15.
J Phys Chem A ; 125(46): 9941-9952, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34748353

RESUMEN

Recent advances in the calculation of activation energies are shedding new light on the dynamical time scales of liquid water. In this Perspective, we examine how activation energies elucidate the central, but not singular, role of the exchange of hydrogen-bond (H-bond) partners that rearrange the H-bond network of water. The contributions of other motions to dynamical time scales and their associated activation energies are discussed along with one case, vibrational spectral diffusion, where H-bond exchanges are not mechanistically significant. Nascent progress on outstanding challenges, including descriptions of non-Arrhenius effects and activation volumes, are detailed along with some directions for future investigations.

16.
J Am Chem Soc ; 143(36): 14855-14868, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34491037

RESUMEN

The dynamics and structure of water in polyacrylamide hydrogels (PAAm-HG), polyacrylamide, and acrylamide solutions are investigated using ultrafast infrared experiments on the OD stretch of dilute HOD/H2O and molecular dynamics simulations. The amide moiety of the monomer/polymers interacts strongly with water through hydrogen bonding (H-bonding). The FT-IR spectra of the three systems indicate that the range of H-bond strengths is relatively unchanged from bulk water. Vibrational population relaxation measurements show that the amide/water H-bonds are somewhat weaker but fall within the range of water/water H-bond strengths. A previous study of water dynamics in PAAm-HG suggested that the slowing observed was due to increasing confinement with concentration. Here, for the same concentrations of the amide moiety, the experimental results demonstrate that the reorientational dynamics (infrared pump-probe experiments) and structural dynamics (two-dimensional infrared spectroscopy) are identical in the three acrylamide systems studied. Molecular dynamics simulations of the water orientational relaxation in aqueous solutions of the acrylamide monomer, trimer, and pentamer are in good agreement with the experimental results and are essentially chain length independent. The simulations show that there is a slower, low-amplitude (<7%) decay component not accessible by the experiments. The simulations examine the dynamics and structure of water H-bonded to acrylamide, in the first solvent shell, and beyond for acrylamide monomers and short chains. The experiments and simulations show that the slowing of water dynamics in PAAm-HG is not caused by confinement in the polymer network but rather by interactions with individual acrylamide moieties.

17.
J Chem Theory Comput ; 17(5): 2659-2671, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33819026

RESUMEN

There are a large number of force fields available to model water in molecular dynamics simulations, which each have their own strengths and weaknesses in describing the behavior of the liquid. One particular weakness in many of these models is their description of dynamics away from ambient conditions, where their ability to reproduce measurements is mixed. To investigate this issue, we use the recently developed fluctuation theory for dynamics to directly evaluate measures of the local temperature and pressure dependence: the activation energy and the activation volume. We examine these activation parameters for hydrogen-bond jump exchange times, OH reorientation times, and diffusion coefficients calculated from the SPC/E, SPC/Fw, TIP3P-PME, TIP3P-PME/Fw, OPC3, TIP4P/2005, TIP4P/Ew, E3B2, and E3B3 water models. Activation energy decompositions available through the fluctuation theory approach provide mechanistic insight into the origins of different temperature dependences between the various models, as well as the influence of three-body effects and flexibility.

18.
J Phys Chem A ; 125(11): 2374-2384, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33720712

RESUMEN

Understanding the structure of proteins is key to unraveling their function in biological processes. Thus, significant attention has been paid to the calculation of conformational free energies. In this paper, we demonstrate a simple extension of fluctuation theory that permits the calculation of the temperature derivative of the conformational free energy, and hence the internal energy and entropy, from single-temperature simulations. The method further enables the decomposition into the contribution of different interactions present in the system to the internal energy surface. We illustrate the method for the canonical test system of alanine dipeptide in aqueous solution, for which we examine the free energy as a function of two dihedral angles. This system, like many, is most effectively treated using accelerated sampling methods and we show how the present approach is compatible with an important class of these, those that introduce a bias potential, by implementing it within metadynamics.


Asunto(s)
Dipéptidos/química , Teoría Cuántica , Temperatura , Entropía , Modelos Moleculares , Conformación Proteica
19.
J Chem Phys ; 154(10): 104503, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33722003

RESUMEN

Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approach is a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined in hydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on the silica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. This appears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated with the weaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.

20.
J Chem Phys ; 154(6): 064501, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33588543

RESUMEN

The dynamics of a vibrational frequency in a condensed phase environment, i.e., the spectral diffusion, has attracted considerable interest over the last two decades. A significant impetus has been the development of two-dimensional infrared (2D-IR) photon-echo spectroscopy that represents a direct experimental probe of spectral diffusion, as measured by the frequency-frequency time correlation function (FFCF). In isotopically dilute water, which is perhaps the most thoroughly studied system, the standard interpretation of the longest timescale observed in the FFCF is that it is associated with hydrogen-bond exchange dynamics. Here, we investigate this connection by detailed analysis of both the spectral diffusion timescales and their associated activation energies. The latter are obtained from the recently developed fluctuation theory for the dynamics approach. The results show that the longest timescale of spectral diffusion obtained by the typical analysis used cannot be directly associated with hydrogen-bond exchanges. The hydrogen-bond exchange time does appear in the decay of the water FFCF, but only as an additional, small-amplitude (<3%) timescale. The dominant contribution to the long-time spectral diffusion dynamics is considerably shorter than the hydrogen-bond exchange time and exhibits a significantly smaller activation energy. It thus arises from hydrogen-bond rearrangements, which occur in between successful hydrogen-bond partner exchanges, and particularly from hydrogen bonds that transiently break before returning to the same acceptor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA