Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Biol Evol ; 33(9): 2294-306, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27247329

RESUMEN

Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa.


Asunto(s)
Secuencia Conservada , Drosophila/genética , Genes Reguladores , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Evolución Biológica , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Epigénesis Genética , Femenino , Genómica/métodos , Masculino , Análisis de Secuencia de ADN/métodos
2.
Development ; 141(10): 2046-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803653

RESUMEN

The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Proteínas ELAV/fisiología , Genes Homeobox , Sistema Nervioso/embriología , Procesamiento Postranscripcional del ARN , Animales , Secuencia de Bases , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Morfogénesis/genética , Sistema Nervioso/metabolismo , Neurogénesis/genética , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Genome Biol ; 11(9): R93, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20858238

RESUMEN

BACKGROUND: The modulation of mRNA levels across tissues and time is key for the establishment and operation of the developmental programs that transform the fertilized egg into a fully formed embryo. Although the developmental mechanisms leading to differential mRNA synthesis are heavily investigated, comparatively little attention is given to the processes of mRNA degradation and how these relate to the molecular programs controlling development. RESULTS: Here we combine timed collection of Drosophila embryos and unfertilized eggs with genome-wide microarray technology to determine the degradation patterns of all mRNAs present during early fruit fly development. Our work studies the kinetics of mRNA decay, the contributions of maternally and zygotically encoded factors to mRNA degradation, and the ways in which mRNA decay profiles relate to gene function, mRNA localization patterns, translation rates and protein turnover. We also detect cis-regulatory sequences enriched in transcripts with common degradation patterns and propose several proteins and microRNAs as developmental regulators of mRNA decay during early fruit fly development. Finally, we experimentally validate the effects of a subset of cis-regulatory sequences and trans-regulators in vivo. CONCLUSIONS: Our work advances the current understanding of the processes controlling mRNA degradation during early Drosophila development, taking us one step closer to the understanding of mRNA decay processes in all animals. Our data also provide a valuable resource for further experimental and computational studies investigating the process of mRNA decay.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , MicroARNs/genética , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Óvulo , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Secuencias Reguladoras de Ácido Ribonucleico , Transcripción Genética
4.
Development ; 137(17): 2951-60, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20667912

RESUMEN

The Drosophila Hox gene Ultrabithorax (Ubx) controls the development of thoracic and abdominal segments, allocating segment-specific features to different cell lineages. Recent studies have shown that Ubx expression is post-transcriptionally regulated by two microRNAs (miRNAs), miR-iab4 and miR-iab8, acting on target sites located in the 3' untranslated regions (UTRs) of Ubx mRNAs. Here, we show that during embryonic development Ubx produces mRNAs with variable 3'UTRs in different regions of the embryo. Analysis of the resulting remodelled 3'UTRs shows that each species harbours different sets of miRNA target sites, converting each class of Ubx mRNA into a considerably different substrate for miRNA regulation. Furthermore, we show that the distinct developmental distributions of Ubx 3'UTRs are established by a mechanism that is independent of miRNA regulation and therefore are not the consequence of miR-iab4/8-mediated RNA degradation acting on those sensitive mRNA species; instead, we propose that this is a hard-wired 3'UTR processing system that is able to regulate target mRNA visibility to miRNAs according to developmental context. We show that reporter constructs that include Ubx short and long 3'UTR sequences display differential expression within the embryonic central nervous system, and also demonstrate that mRNAs of three other Hox genes suffer similar and synchronous developmental 3'UTR processing events during embryogenesis. Our work thus reveals that developmental RNA processing of 3'UTR sequences is a general molecular strategy used by a key family of developmental regulators so that their transcripts can display different levels of visibility to miRNA regulation according to developmental cues.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Homeodominio/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Regiones no Traducidas 3' , Animales , Animales Modificados Genéticamente , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , MicroARNs/genética , Modelos Biológicos , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética
5.
Genetics ; 184(3): 745-58, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20038634

RESUMEN

The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments-encoded by individual exons-that modify the distance between the homeodomain and a cofactor-interaction module termed the "YPWM" motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd). Altogether, our results indicate that the structural changes produced by alternative splicing have functional implications for Ubx protein function in vivo and in vitro. Since other Hox genes also produce splicing isoforms affecting similar protein domains, we suggest that alternative splicing may represent an underestimated regulatory system modulating Hox gene specificity during fly development.


Asunto(s)
Empalme Alternativo/fisiología , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , ADN/genética , ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Homeodominio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética
6.
Dev Genes Evol ; 216(2): 57-68, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16402271

RESUMEN

In Hydra, developmental processes are permanently active to maintain a simple body plan consisting of a two-layered, radially symmetrical tube with two differentiated structures, head and foot. Foot formation is a dynamic process and includes terminal differentiation of gastric epithelial cells into mucous secreting basal disc cells. A well-established marker for this highly specialized cell type is a locally expressed peroxidase (Hoffmeister et al. 1985). Based on the foot-specific peroxidase activity, the gene PPOD1 has been identified (Hoffmeister-Ullerich et al. 2002). Unexpectedly, this approach led to the identification of a second gene, PPOD2, with high sequence similarity to PPOD1 but a strikingly different expression pattern. Here, we characterize PPOD2 in more detail and show that both genes, PPOD1 and PPOD2, are members of a gene family with differential complexity and expression patterns in different Hydra species. At the genomic level, differences in gene number and structure within the PPOD gene family, even among closely related species, support a recently proposed phylogeny of the genus Hydra and point to unexpected genomic plasticity within closely related species of this ancient metazoan taxon.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hydra/enzimología , Hydra/crecimiento & desarrollo , Peroxidasa/genética , Animales , Biomarcadores , Prueba de Complementación Genética , Genoma/genética , Hydra/clasificación , Extremidad Inferior/crecimiento & desarrollo , Peroxidasa/análisis , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA