Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Nat Commun ; 15(1): 6604, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098920

RESUMEN

The ependyma lining the third ventricle (3V) in the mediobasal hypothalamus plays a crucial role in energy balance and glucose homeostasis. It is characterized by a high functional heterogeneity and plasticity, but the underlying molecular mechanisms governing its features are not fully understood. Here, 5481 hypothalamic ependymocytes were cataloged using FACS-assisted scRNAseq from fed, 12h-fasted, and 24h-fasted adult male mice. With standard clustering analysis, typical ependymal cells and ß2-tanycytes appear sharply defined, but other subpopulations, ß1- and α-tanycytes, display fuzzy boundaries with few or no specific markers. Pseudospatial approaches, based on the 3V neuroanatomical distribution, enable the identification of specific versus shared tanycyte markers and subgroup-specific versus general tanycyte functions. We show that fasting dynamically shifts gene expression patterns along the 3V, leading to a spatial redistribution of cell type-specific responses. Altogether, we show that changes in energy status induce metabolic and functional switches in tanycyte subpopulations, providing insights into molecular and functional diversity and plasticity within the tanycyte population.


Asunto(s)
Células Ependimogliales , Ayuno , Metabolismo de los Lípidos , Neuronas , Animales , Células Ependimogliales/metabolismo , Masculino , Ayuno/metabolismo , Ratones , Neuronas/metabolismo , Epéndimo/metabolismo , Epéndimo/citología , Hipotálamo/metabolismo , Hipotálamo/citología , Ratones Endogámicos C57BL , Metabolismo Energético , Tercer Ventrículo/metabolismo , Glucosa/metabolismo
2.
Diabetes ; 73(7): 1027-1031, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38900951

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor involved in the regulation of blood glucose levels and food intake. Stabilized agonists targeting GLP-1R are used in the treatment of type 2 diabetes and have recently become a breakthrough obesity therapy. Here, we revisit a classic article in Diabetes by Thorens et al. that described the cloning, sequencing, and functional expression of the human GLP-1R. The article also demonstrated that exendin4(1-39) was a full agonist of the human GLP-1R whereas exendin4(9-39) was a full antagonist. We discuss how the knowledge imparted by these studies has gone on to inform multiple strands of GLP-1R biology over the past three decades, including pharmacology, signaling, human genetics, structural biology, and chemical biology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Exenatida/uso terapéutico , Exenatida/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Animales , Péptidos/uso terapéutico
5.
Physiol Rev ; 104(4): 1461-1486, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38661565

RESUMEN

Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet ß-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.


Asunto(s)
Glucagón , Glucosa , Insulina , Neuronas , Animales , Glucagón/metabolismo , Humanos , Insulina/metabolismo , Neuronas/metabolismo , Glucosa/metabolismo , Secreción de Insulina/fisiología , Islotes Pancreáticos/metabolismo
7.
Diabetologia ; 67(2): 371-391, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38017352

RESUMEN

AIMS/HYPOTHESIS: Repeated exposures to insulin-induced hypoglycaemia in people with diabetes progressively impairs the counterregulatory response (CRR) that restores normoglycaemia. This defect is characterised by reduced secretion of glucagon and other counterregulatory hormones. Evidence indicates that glucose-responsive neurons located in the hypothalamus orchestrate the CRR. Here, we aimed to identify the changes in hypothalamic gene and protein expression that underlie impaired CRR in a mouse model of defective CRR. METHODS: High-fat-diet fed and low-dose streptozocin-treated C57BL/6N mice were exposed to one (acute hypoglycaemia [AH]) or multiple (recurrent hypoglycaemia [RH]) insulin-induced hypoglycaemic episodes and plasma glucagon levels were measured. Single-nuclei RNA-seq (snRNA-seq) data were obtained from the hypothalamus and cortex of mice exposed to AH and RH. Proteomic data were obtained from hypothalamic synaptosomal fractions. RESULTS: The final insulin injection resulted in similar plasma glucose levels in the RH group and AH groups, but glucagon secretion was significantly lower in the RH group (AH: 94.5±9.2 ng/l [n=33]; RH: 59.0±4.8 ng/l [n=37]; p<0.001). Analysis of snRNA-seq data revealed similar proportions of hypothalamic cell subpopulations in the AH- and RH-exposed mice. Changes in transcriptional profiles were found in all cell types analysed. In neurons from RH-exposed mice, we observed a significant decrease in expression of Avp, Pmch and Pcsk1n, and the most overexpressed gene was Kcnq1ot1, as compared with AH-exposed mice. Gene ontology analysis of differentially expressed genes (DEGs) indicated a coordinated decrease in many oxidative phosphorylation genes and reduced expression of vacuolar H+- and Na+/K+-ATPases; these observations were in large part confirmed in the proteomic analysis of synaptosomal fractions. Compared with AH-exposed mice, oligodendrocytes from RH-exposed mice had major changes in gene expression that suggested reduced myelin formation. In astrocytes from RH-exposed mice, DEGs indicated reduced capacity for neurotransmitters scavenging in tripartite synapses as compared with astrocytes from AH-exposed mice. In addition, in neurons and astrocytes, multiple changes in gene expression suggested increased amyloid beta (Aß) production and stability. The snRNA-seq analysis of the cortex showed that the adaptation to RH involved different biological processes from those seen in the hypothalamus. CONCLUSIONS/INTERPRETATION: The present study provides a model of defective counterregulation in a mouse model of type 2 diabetes. It shows that repeated hypoglycaemic episodes induce multiple defects affecting all hypothalamic cell types and their interactions, indicative of impaired neuronal network signalling and dysegulated hypoglycaemia sensing, and displaying features of neurodegenerative diseases. It also shows that repeated hypoglycaemia leads to specific molecular adaptation in the hypothalamus when compared with the cortex. DATA AVAILABILITY: The transcriptomic dataset is available via the GEO ( http://www.ncbi.nlm.nih.gov/geo/ ), using the accession no. GSE226277. The proteomic dataset is available via the ProteomeXchange data repository ( http://www.proteomexchange.org ), using the accession no. PXD040183.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Humanos , Ratones , Animales , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptidos beta-Amiloides , Proteómica , Ratones Endogámicos C57BL , Hipoglucemia/tratamiento farmacológico , Insulina/metabolismo , Hipotálamo/metabolismo , Hipoglucemiantes/efectos adversos , Perfilación de la Expresión Génica , ARN Nuclear Pequeño/metabolismo , Glucemia/metabolismo
8.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127123

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Islotes Pancreáticos , Fragmentos de Péptidos , Humanos , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Islotes Pancreáticos/metabolismo , Hipoglucemia/metabolismo , Insulina/metabolismo
9.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884694

RESUMEN

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Glucosa , Ratones , Humanos , Animales , Glucosa/metabolismo , Transporte Biológico/fisiología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Diferenciación Celular , Linfocitos T CD8-positivos/metabolismo
10.
PLoS Biol ; 21(9): e3002308, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733692

RESUMEN

Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.


Asunto(s)
Conexina 43 , Hiperglucemia , Animales , Ratones , Ratas , Neuroglía , Glucosa , Proteína Wnt-5a/genética
11.
EMBO Rep ; 24(8): e57344, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37314252

RESUMEN

The counterregulatory response to hypoglycemia (CRR), which ensures a sufficient glucose supply to the brain, is an essential survival function. It is orchestrated by incompletely characterized glucose-sensing neurons, which trigger a coordinated autonomous and hormonal response that restores normoglycemia. Here, we investigate the role of hypothalamic Tmem117, identified in a genetic screen as a regulator of CRR. We show that Tmem117 is expressed in vasopressin magnocellular neurons of the hypothalamus. Tmem117 inactivation in these neurons increases hypoglycemia-induced vasopressin secretion leading to higher glucagon secretion in male mice, and this effect is estrus cycle phase dependent in female mice. Ex vivo electrophysiological analysis, in situ hybridization, and in vivo calcium imaging reveal that Tmem117 inactivation does not affect the glucose-sensing properties of vasopressin neurons but increases ER stress, ROS production, and intracellular calcium levels accompanied by increased vasopressin production and secretion. Thus, Tmem117 in vasopressin neurons is a physiological regulator of glucagon secretion, which highlights the role of these neurons in the coordinated response to hypoglycemia.


Asunto(s)
Glucagón , Hipoglucemia , Ratones , Masculino , Femenino , Animales , Glucagón/efectos adversos , Calcio , Hipoglucemia/genética , Hipoglucemia/inducido químicamente , Vasopresinas/efectos adversos , Glucosa , Neuronas/fisiología , Glucemia , Insulina
12.
Diabetologia ; 66(7): 1340-1352, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37015997

RESUMEN

AIMS/HYPOTHESIS: Chronic hyperglycaemia and recurrent hypoglycaemia are independently associated with accelerated cognitive decline in type 1 diabetes. Recurrent hypoglycaemia in rodent models of chemically induced (streptozotocin [STZ]) diabetes leads to cognitive impairment in memory-related tasks associated with hippocampal oxidative damage. This study examined the hypothesis that post-hypoglycaemic hyperglycaemia in STZ-diabetes exacerbates hippocampal oxidative stress and explored potential contributory mechanisms. METHODS: The hyperinsulinaemic glucose clamp technique was used to induce equivalent hypoglycaemia and to control post-hypoglycaemic glucose levels in mice with and without STZ-diabetes and Nrf2-/- mice (lacking Nrf2 [also known as Nfe2l2]). Subsequently, quantitative proteomics based on stable isotope labelling by amino acids in cell culture and biochemical approaches were used to assess oxidative damage and explore contributory pathways. RESULTS: Evidence of hippocampal oxidative damage was most marked in mice with STZ-diabetes exposed to post-hypoglycaemic hyperglycaemia; these mice also showed induction of Nrf2 and the Nrf2 transcriptional targets Sod2 and Hmox-1. In this group, hypoglycaemia induced a significant upregulation of proteins involved in alternative fuel provision, reductive biosynthesis and degradation of damaged proteins, and a significant downregulation of proteins mediating the stress response. Key differences emerged between mice with and without STZ-diabetes following recovery from hypoglycaemia in proteins mediating the stress response and reductive biosynthesis. CONCLUSIONS/INTERPRETATION: There is a disruption of the cellular response to a hypoglycaemic challenge in mice with STZ-induced diabetes that is not seen in wild-type non-diabetic animals. The chronic hyperglycaemia of diabetes and post-hypoglycaemic hyperglycaemia act synergistically to induce oxidative stress and damage in the hippocampus, possibly leading to irreversible damage/modification to proteins or synapses between cells. In conclusion, recurrent hypoglycaemia in sub-optimally controlled diabetes may contribute, at least in part, to accelerated cognitive decline through amplifying oxidative damage in key brain regions, such as the hippocampus. DATA AVAILABILITY: The datasets generated during and/or analysed during the current study are available in ProteomeXchange, accession no. 1-20220824-173727 ( www.proteomexchange.org ). Additional datasets generated during and/or analysed during the present study are available from the corresponding author upon reasonable request.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Hipoglucemia , Ratones , Animales , Hiperglucemia/metabolismo , Hipoglucemiantes , Diabetes Mellitus Tipo 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Hipoglucemia/metabolismo , Hipocampo , Estrés Oxidativo , Diabetes Mellitus Experimental/metabolismo , Glucemia/metabolismo
13.
iScience ; 26(4): 106057, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36942050

RESUMEN

Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of action remain elusive. Recent data point to the gut as MET's primary target. Here, we explored the effect of MET on the gut glucose transport machinery. Using human enterocytes (Caco-2/TC7 cells) in vitro, we showed that MET transiently reduced the apical density of sodium-glucose transporter 1 (SGLT1) and decreased the absorption of glucose, without changes in the mRNA levels of the transporter. Administered 1 h before a glucose challenge in rats (Wistar, GK), C57BL6 mice and mice pigs, oral MET reduced the post-prandial glucose response (PGR). This effect was abrogated in SGLT1-KO mice. MET also reduced the luminal clearance of 2-(18F)-fluoro-2-deoxy-D-glucose after oral administration in rats. In conclusion, oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of SGLT1 in enterocytes, which may contribute to the clinical effects of the drug.

14.
Mol Metab ; 70: 101700, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870604

RESUMEN

OBJECTIVE: Deregulation of hepatic glucose production is a key driver in the pathogenesis of diabetes, but its short-term regulation is incompletely deciphered. According to textbooks, glucose is produced in the endoplasmic reticulum by glucose-6-phosphatase (G6Pase) and then exported in the blood by the glucose transporter GLUT2. However, in the absence of GLUT2, glucose can be produced by a cholesterol-dependent vesicular pathway, which remains to be deciphered. Interestingly, a similar mechanism relying on vesicle trafficking controls short-term G6Pase activity. We thus investigated whether Caveolin-1 (Cav1), a master regulator of cholesterol trafficking, might be the mechanistic link between glucose production by G6Pase in the ER and glucose export through a vesicular pathway. METHODS: Glucose production from fasted mice lacking Cav1, GLUT2 or both proteins was measured in vitro in primary culture of hepatocytes and in vivo by pyruvate tolerance tests. The cellular localization of Cav1 and the catalytic unit of glucose-6-phosphatase (G6PC1) were studied by western blotting from purified membranes, immunofluorescence on primary hepatocytes and fixed liver sections and by in vivo imaging of chimeric constructs overexpressed in cell lines. G6PC1 trafficking to the plasma membrane was inhibited by a broad inhibitor of vesicular pathways or by an anchoring system retaining G6PC1 specifically to the ER membrane. RESULTS: Hepatocyte glucose production is reduced at the step catalyzed by G6Pase in the absence of Cav1. In the absence of both GLUT2 and Cav1, gluconeogenesis is nearly abolished, indicating that these pathways can be considered as the two major pathways of de novo glucose production. Mechanistically, Cav1 colocalizes but does not interact with G6PC1 and controls its localization in the Golgi complex and at the plasma membrane. The localization of G6PC1 at the plasma membrane is correlated to glucose production. Accordingly, retaining G6PC1 in the ER reduces glucose production by hepatic cells. CONCLUSIONS: Our data evidence a pathway of glucose production that relies on Cav1-dependent trafficking of G6PC1 to the plasma membrane. This reveals a new cellular regulation of G6Pase activity that contributes to hepatic glucose production and glucose homeostasis.


Asunto(s)
Glucosa-6-Fosfatasa , Glucosa , Animales , Ratones , Caveolina 1/metabolismo , Colesterol/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Hígado/metabolismo
15.
Sci Rep ; 12(1): 17717, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271117

RESUMEN

Feeding behavior is a complex process that depends on the ability of the brain to integrate hormonal and nutritional signals, such as glucose. One glucosensing mechanism relies on the glucose transporter 2 (GLUT2) in the hypothalamus, especially in radial glia-like cells called tanycytes. Here, we analyzed whether a GLUT2-dependent glucosensing mechanism is required for the normal regulation of feeding behavior in GFAP-positive tanycytes. Genetic inactivation of Glut2 in GFAP-expressing tanycytes was performed using Cre/Lox technology. The efficiency of GFAP-tanycyte targeting was analyzed in the anteroposterior and dorsoventral axes by evaluating GFP fluorescence. Feeding behavior, hormonal levels, neuronal activity using c-Fos, and neuropeptide expression were also analyzed in the fasting-to-refeeding transition. In basal conditions, Glut2-inactivated mice had normal food intake and meal patterns. Implementation of a preceeding fasting period led to decreased total food intake and a delay in meal initiation during refeeding. Additionally, Glut2 inactivation increased the number of c-Fos-positive cells in the ventromedial nucleus in response to fasting and a deregulation of Pomc expression in the fasting-to-refeeding transition. Thus, a GLUT2-dependent glucose-sensing mechanism in GFAP-tanycytes is required to control food consumption and promote meal initiation after a fasting period.


Asunto(s)
Células Ependimogliales , Conducta Alimentaria , Transportador de Glucosa de Tipo 2 , Animales , Ratones , Células Ependimogliales/metabolismo , Ayuno , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo
16.
Nat Commun ; 13(1): 5761, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180454

RESUMEN

The counterregulatory response to hypoglycemia that restores normal blood glucose levels is an essential physiological function. It is initiated, in large part, by incompletely characterized brain hypoglycemia sensing neurons that trigger the secretion of counterregulatory hormones, in particular glucagon, to stimulate hepatic glucose production. In a genetic screen of recombinant inbred BXD mice we previously identified Agpat5 as a candidate regulator of hypoglycemia-induced glucagon secretion. Here, using genetic mouse models, we demonstrate that Agpat5 expressed in agouti-related peptide neurons is required for their activation by hypoglycemia, for hypoglycemia-induced vagal nerve activity, and glucagon secretion. We find that inactivation of Agpat5 leads to increased fatty acid oxidation and ATP production and that suppressing Cpt1a-dependent fatty acid import into mitochondria restores hypoglycemia sensing. Collectively, our data show that AgRP neurons are involved in the control of glucagon secretion and that Agpat5, by partitioning fatty acyl-CoAs away from mitochondrial fatty acid oxidation and ATP generation, ensures that the fall in intracellular ATP, which triggers neuronal firing, faithfully reflects changes in glycemia.


Asunto(s)
Glucagón , Hipoglucemia , Adenosina Trifosfato , Proteína Relacionada con Agouti/genética , Animales , Glucemia , Ácidos Grasos , Glucosa , Insulina , Lípidos/efectos adversos , Ratones , Neuronas
17.
Diabetes Obes Metab ; 24(11): 2090-2101, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35676825

RESUMEN

AIMS: To describe the in vitro characteristics and antidiabetic in vivo efficacy of the novel glucagon-like peptide-1 receptor agonist (GLP-1RA) GL0034. MATERIALS AND METHODS: Glucagon-like peptide-1 receptor (GLP-1R) kinetic binding parameters, cyclic adenosine monophosphate (cAMP) signalling, endocytosis and recycling were measured using HEK293 and INS-1832/3 cells expressing human GLP-1R. Insulin secretion was measured in vitro using INS-1832/3 cells, mouse islets and human islets. Chronic administration studies to evaluate weight loss and glycaemic effects were performed in db/db and diet-induced obese mice. RESULTS: Compared to the leading GLP-1RA semaglutide, GL0034 showed increased binding affinity and potency-driven bias in favour of cAMP over GLP-1R endocytosis and ß-arrestin-2 recruitment. Insulin secretory responses were similar for both ligands. GL0034 (6 nmol/kg) led to at least as much weight loss and lowering of blood glucose as did semaglutide at a higher dose (14 nmol/kg). CONCLUSIONS: GL0034 is a G protein-biased agonist that shows powerful antidiabetic effects in mice, and may serve as a promising new GLP-1RA for obese patients with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Adenosina Monofosfato , Animales , Glucemia , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Células HEK293 , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ligandos , Ratones , Pérdida de Peso , beta-Arrestinas/metabolismo
18.
Cells ; 11(11)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35681432

RESUMEN

Cystathionine beta synthase (CBS) catalyzes the first step of the transsulfuration pathway from homocysteine to cystathionine, and its deficiency leads to hyperhomocysteinemia (HHcy) in humans and rodents. To date, scarce information is available about the HHcy effect on insulin secretion, and the link between CBS activity and the setting of type 2 diabetes is still unknown. We aimed to decipher the consequences of an inborn defect in CBS on glucose homeostasis in mice. We used a mouse model heterozygous for CBS (CBS+/-) that presented a mild HHcy. Other groups were supplemented with methionine in drinking water to increase the mild to intermediate HHcy, and were submitted to a high-fat diet (HFD). We measured the food intake, body weight gain, body composition, glucose homeostasis, plasma homocysteine level, and CBS activity. We evidenced a defect in the stimulated insulin secretion in CBS+/- mice with mild and intermediate HHcy, while mice with intermediate HHcy under HFD presented an improvement in insulin sensitivity that compensated for the decreased insulin secretion and permitted them to maintain a glucose tolerance similar to the CBS+/+ mice. Islets isolated from CBS+/- mice maintained their ability to respond to the elevated glucose levels, and we showed that a lower parasympathetic tone could, at least in part, be responsible for the insulin secretion defect. Our results emphasize the important role of Hcy metabolic enzymes in insulin secretion and overall glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Homocistinuria , Hiperhomocisteinemia , Animales , Cistationina betasintasa/metabolismo , Glucosa , Homeostasis , Homocisteína , Homocistinuria/metabolismo , Hiperhomocisteinemia/metabolismo , Ratones
19.
Nat Commun ; 13(1): 1783, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379807

RESUMEN

Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions.


Asunto(s)
Nefropatías Diabéticas , Receptor Cannabinoide CB1 , Animales , Nefropatías Diabéticas/patología , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
20.
Mol Metab ; 61: 101479, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35339728

RESUMEN

OBJECTIVES: Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS: To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS: We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS: Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.


Asunto(s)
Glucagón , Hipoglucemia , Hipotálamo , Quinasas Asociadas a Receptores de Interleucina-1 , Animales , Glucagón/metabolismo , Hipoglucemia/genética , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA