RESUMEN
BACKGROUND: Environmental contamination is suspected to play an important role in Candida auris transmission. Understanding speed and risks of contamination after room disinfection could inform environmental cleaning recommendations. METHODS: We conducted a prospective multicenter study of environmental contamination associated with C. auris colonization at six ventilator-capable skilled nursing facilities and one acute-care hospital in Illinois and California. Known C. auris carriers were sampled at five body-sites followed by sampling of nearby room surfaces before disinfection and at 0, 4, 8, and 12-hours post-disinfection. Samples were cultured for C. auris and bacterial multidrug-resistant organisms (MDROs). Odds of surface contamination after disinfection were analyzed using multilevel generalized estimating equations. RESULTS: Among 41 known C. auris carriers, colonization was detected most frequently on palms/fingertips (76%) and nares (71%). C. auris contamination was detected on 32.2% (66/205) of room surfaces pre-disinfection and 20.5% (39/190) of room surfaces by 4-hours post-disinfection. A higher number of C. auris-colonized body sites was associated with higher odds of environmental contamination at every time point following disinfection, adjusting for facility of residence. In the rooms of 38 (93%) C. auris carriers co-colonized with a bacterial MDRO, 2%-24% of surfaces were additionally contaminated with the same MDRO by 4-hours post-disinfection. CONCLUSIONS: C. auris can contaminate the healthcare environment rapidly after disinfection, highlighting the challenges associated with environmental disinfection. Future research should investigate long-acting disinfectants, antimicrobial surfaces, and more effective patient skin antisepsis to reduce the environmental reservoir of C. auris and bacterial MDROs in healthcare settings.
RESUMEN
Schizophrenia affects millions of people worldwide and is a major challenge for the scientific community. Like most psychotic diseases, it is also considered a complicated mental disorder caused by an imbalance in neurotransmitters. Due to the complexity of neuropathology, it is always a complicated disorder. The lack of proper understanding of the pathophysiology makes the disorder unmanageable in clinical settings. However, due to recent advances in animal models, we hope we can have better therapeutic approaches with more success in clinical settings. Dopamine, glutamate, GABA, and serotonin are the neurotransmitters involved in the pathophysiology of schizophrenia. Various animal models have been put forward based on these neurotransmitters, including pharmacological, neurodevelopmental, and genetic models. Polymorphism of genes such as dysbindin, DICS1, and NRG1 has also been reported in schizophrenia. Hypothesis based on dopamine, glutamate, and serotonin are considered successful models of schizophrenia on which drug therapies have been designed to date. New targets like the orexin system, muscarinic and nicotinic receptors, and cannabinoid receptors have been approached to alleviate the negative and cognitive symptoms. The non-pharmacological models like the post-weaning social isolation model (maternal deprivation), the isolation rearing model etc. have been also developed to mimic the symptoms of schizophrenia and to create and test new approaches of drug therapy which is a breakthrough at present in psychiatric disorders. Different behavioral tests have been evaluated in these specific models. This review will highlight the currently available animal models and behavioral tests in psychic disorders concerning schizophrenia.
Asunto(s)
Esquizofrenia , Animales , Esquizofrenia/genética , Esquizofrenia/tratamiento farmacológico , Serotonina , Dopamina/uso terapéutico , Investigación Biomédica Traslacional , Ácido Glutámico , Modelos Animales de EnfermedadRESUMEN
Background: Identifying the source of healthcare personnel (HCP) coronavirus disease 2019 (COVID-19) is important to guide occupational safety efforts. We used a combined whole genome sequencing (WGS) and epidemiologic approach to investigate the source of HCP COVID-19 at a tertiary-care center early in the COVID-19 pandemic. Methods: Remnant nasopharyngeal swab samples from HCP and patients with polymerase chain reaction-proven COVID-19 from a period with complete sample retention (14 March 2020 to 10 April 2020) at Rush University Medical Center in Chicago, Illinois, underwent viral RNA extraction and WGS. Genomes with >90% coverage underwent cluster detection using a 2 single-nucleotide variant genetic distance cutoff. Genomic clusters were evaluated for epidemiologic linkages, with strong linkages defined by evidence of time/location overlap. Results: We analyzed 1031 sequences, identifying 49 clusters that included ≥1 HCP (265 patients, 115 HCP). Most HCP infections were not healthcare associated (88/115 [76.5%]). We did not identify any strong epidemiologic linkages for patient-to-HCP transmission. Thirteen HCP cases (11.3%) were attributed to a potential patient source (weak evidence involving nonclinical staff that lacked location data to prove or disprove contact with patients in same cluster). Fourteen HCP cases (12.2%) were attributed to HCP source (11 with strong evidence). Conclusions: Using genomic and epidemiologic data, we found that most HCP severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were not healthcare associated. We did not find strong evidence of patient-to-HCP transmission of SARS-CoV-2.