Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Med ; 30(8): 2165-2169, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821540

RESUMEN

Most people with intellectual disability (ID) do not receive a molecular diagnosis following genetic testing. To identify new etiologies of ID, we performed a genetic association analysis comparing the burden of rare variants in 41,132 noncoding genes between 5,529 unrelated cases and 46,401 unrelated controls. RNU4-2, which encodes U4 small nuclear RNA, a critical component of the spliceosome, was the most strongly associated gene. We implicated de novo variants among 47 cases in two regions of RNU4-2 in the etiology of a syndrome characterized by ID, microcephaly, short stature, hypotonia, seizures and motor delay. We replicated this finding in three collections, bringing the number of unrelated cases to 73. Analysis of national genomic diagnostic data showed RNU4-2 to be a more common etiological gene for neurodevelopmental abnormality than any previously reported autosomal gene. Our findings add to the growing evidence of spliceosome dysfunction in the etiologies of neurological disorders.


Asunto(s)
Discapacidad Intelectual , Mutación , Trastornos del Neurodesarrollo , ARN Nuclear Pequeño , Humanos , ARN Nuclear Pequeño/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Mutación/genética , Femenino , Masculino , Empalmosomas/genética , Microcefalia/genética , Microcefalia/epidemiología , Estudios de Asociación Genética , Niño
2.
Nat Med ; 29(3): 679-688, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928819

RESUMEN

The genetic etiologies of more than half of rare diseases remain unknown. Standardized genome sequencing and phenotyping of large patient cohorts provide an opportunity for discovering the unknown etiologies, but this depends on efficient and powerful analytical methods. We built a compact database, the 'Rareservoir', containing the rare variant genotypes and phenotypes of 77,539 participants sequenced by the 100,000 Genomes Project. We then used the Bayesian genetic association method BeviMed to infer associations between genes and each of 269 rare disease classes assigned by clinicians to the participants. We identified 241 known and 19 previously unidentified associations. We validated associations with ERG, PMEPA1 and GPR156 by searching for pedigrees in other cohorts and using bioinformatic and experimental approaches. We provide evidence that (1) loss-of-function variants in the Erythroblast Transformation Specific (ETS)-family transcription factor encoding gene ERG lead to primary lymphoedema, (2) truncating variants in the last exon of transforming growth factor-ß regulator PMEPA1 result in Loeys-Dietz syndrome and (3) loss-of-function variants in GPR156 give rise to recessive congenital hearing impairment. The Rareservoir provides a lightweight, flexible and portable system for synthesizing the genetic and phenotypic data required to study rare disease cohorts with tens of thousands of participants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Teorema de Bayes , Genotipo , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Proteínas de la Membrana
3.
Blood ; 141(18): 2261-2274, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790527

RESUMEN

Pathogenic missense variants in SLFN14, which encode an RNA endoribonuclease protein that regulates ribosomal RNA (rRNA) degradation, are known to cause inherited thrombocytopenia (TP) with impaired platelet aggregation and adenosine triphosphate secretion. Despite mild laboratory defects, the patients displayed an obvious bleeding phenotype. However, the function of SLFN14 in megakaryocyte (MK) and platelet biology remains unknown. This study aimed to model the disease in an immortalized MK cell line (imMKCL) and to characterize the platelet transcriptome in patients with the SLFN14 K219N variant. MK derived from heterozygous and homozygous SLFN14 K219N imMKCL and stem cells of blood from patients mainly presented with a defect in proplatelet formation and mitochondrial organization. SLFN14-defective platelets and mature MK showed signs of rRNA degradation; however, this was absent in undifferentiated imMKCL cells and granulocytes. Total platelet RNA was sequenced in 2 patients and 19 healthy controls. Differential gene expression analysis yielded 2999 and 2888 significantly (|log2 fold change| >1, false discovery rate <0.05) up- and downregulated genes, respectively. Remarkably, these downregulated genes were not enriched in any biological pathway, whereas upregulated genes were enriched in pathways involved in (mitochondrial) translation and transcription, with a significant upregulation of 134 ribosomal protein genes (RPGs). The upregulation of mitochondrial RPGs through increased mammalian target of rapamycin complex 1 (mTORC1) signaling in SLFN14 K219N MK seems to be a compensatory response to rRNA degradation. mTORC1 inhibition with rapamycin resulted in further enhanced rRNA degradation in SLFN14 K219N MK. Taken together, our study indicates dysregulation of mTORC1 coordinated ribosomal biogenesis is the disease mechanism for SLFN14-related TP.


Asunto(s)
Trombocitopenia , Humanos , Trombocitopenia/patología , Plaquetas/metabolismo , Ribosomas/metabolismo , Megacariocitos/patología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , ARN/metabolismo
4.
J Thromb Haemost ; 21(4): 887-895, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696193

RESUMEN

BACKGROUND: The international study ThromboGenomics has evaluated the diagnostic rate using a targeted multigene panel test for the screening of inherited bleeding, thrombotic and platelet disorders. OBJECTIVES: We retrospectively analyzed the results of the implementation of genetic testing for inherited bleeding, thrombotic and platelet disorders in Belgian clinical practice and evaluated possible reclassification of reported variants. PATIENTS/METHODS: We implemented a Thrombosis-Hemostasis multigene panel test using whole exome sequencing to diagnose 487 patients recruited by 27 different Belgian hospitals with the implementation of stringent laboratory accreditation standards and by studying up to 100 diagnostic-grade genes. RESULTS: This Thrombosis-Hemostasis multigene panel test was able to detect at least one genetic variant in 58% of the 487 patients of which 50% were (likely) pathogenic variants and the others were variants of unknown significance. Polygenic variants were detected in 65 patients (13%). A multi-step workflow for results discussion by multidisciplinary team meetings and patients' recalls for segregation studies and additional laboratory testing was set up. Variants were also submitted to the GoldVariants database from the International Society on Thrombosis and Haemostasis (ISTH). The aim of these approaches is to optimize variant interpretation and to (re)classify variants of unknown significance as (likely) pathogenic or (likely) benign. CONCLUSIONS: The growing implementation of multigene panel tests in clinical diagnostics comes with difficulties in interpreting genetic results. Additional efforts are needed to continuously optimize the diagnostic outcome.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Trombosis , Humanos , Bélgica , Estudios Retrospectivos , Hemorragia/diagnóstico , Hemorragia/genética , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Trastornos de las Plaquetas Sanguíneas/genética , Pruebas Genéticas , Trombosis/genética
7.
Blood Adv ; 5(18): 3568-3580, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34546355

RESUMEN

Brain-derived neurotrophic factor (BDNF) has both autocrine and paracrine roles in neurons, and its release and signaling mechanisms have been extensively studied in the central nervous system. Large quantities of BDNF have been reported in circulation, essentially stored in platelets with concentrations reaching 100- to 1000-fold those of neurons. Despite this abundance, the function of BDNF in platelet biology has not been explored. At low concentrations, BDNF primed platelets, acting synergistically with classical agonists. At high concentrations, BDNF induced complete biphasic platelet aggregation that in part relied on amplification from secondary mediators. Neurotrophin-4, but not nerve growth factor, and an activating antibody against the canonical BDNF receptor tropomyosin-related kinase B (TrkB) induced similar platelet responses to BDNF, suggesting TrkB could be the mediator. Platelets expressed, both at their surface and in their intracellular compartment, a truncated form of TrkB lacking its tyrosine kinase domain. BDNF-induced platelet aggregation was prevented by inhibitors of Ras-related C3 botulinum toxin substrate 1 (Rac1), protein kinase C, and phosphoinositide 3-kinase. BDNF-stimulated platelets secreted a panel of angiogenic and inflammatory cytokines, which may play a role in maintaining vascular homeostasis. Two families with autism spectrum disorder were found to carry rare missense variants in the BDNF gene. Platelet studies revealed defects in platelet aggregation to low concentrations of collagen, as well as reduced adenosine triphosphate secretion in response to adenosine diphosphate. In summary, circulating BDNF levels appear to regulate platelet activation, aggregation, and secretion through activation of a truncated TrkB receptor and downstream kinase-dependent signaling.


Asunto(s)
Trastorno del Espectro Autista , Factor Neurotrófico Derivado del Encéfalo , Humanos , Fosfatidilinositol 3-Quinasas , Activación Plaquetaria , Agregación Plaquetaria
9.
Hum Mol Genet ; 29(20): 3431-3442, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33075815

RESUMEN

We describe a lethal combined nervous and reproductive systems disease in three affected siblings of a consanguineous family. The phenotype was characterized by visceroautonomic dysfunction (neonatal bradycardia/apnea, feeding problems, hyperactive startle reflex), severe postnatal progressive neurological abnormalities (including abnormal neonatal cry, hypotonia, epilepsy, polyneuropathy, cerebral gray matter atrophy), visual impairment, testicular dysgenesis in males and sudden death at infant age by brainstem-mediated cardiorespiratory arrest. Whole-exome sequencing revealed a novel homozygous frameshift variant p.Val242GlufsTer52 in the TSPY-like 1 gene (TSPYL1). The truncated TSPYL1 protein that lacks the nucleosome assembly protein domain was retained in the Golgi of fibroblasts from the three patients, whereas control fibroblasts express full-length TSPYL1 in the nucleus. Proteomic analysis of nuclear extracts from fibroblasts identified 24 upregulated and 20 downregulated proteins in the patients compared with 5 controls with 'regulation of cell cycle' as the highest scored biological pathway affected. TSPYL1-deficient cells had prolonged S and G2 phases with reduced cellular proliferation rates. Tspyl1 depletion in zebrafish mimicked the patients' phenotype with early lethality, defects in neurogenesis and cardiac dilation. In conclusion, this study reports the third pedigree with recessive TSPYL1 variants, confirming that TSPYL1 deficiency leads to a combined nervous and reproductive systems disease, and provides for the first time insights into the disease mechanism.


Asunto(s)
Fibroblastos/patología , Mutación del Sistema de Lectura , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteoma/análisis , Muerte Súbita del Lactante/patología , Animales , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Fenotipo , Muerte Súbita del Lactante/genética , Secuenciación del Exoma , Pez Cebra
10.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
11.
JIMD Rep ; 47(1): 9-16, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31240161

RESUMEN

BACKGROUND: Brain monoamine vesicular transport disease is an infantile onset neurodevelopmental disorder caused by variants in SLC18A2, which codes for the vesicular monoamine transporter 2 (VMAT2) protein, involved in the transport of monoamines into synaptic vesicles and of serotonin into platelet dense granules. CASE PRESENTATION: The presented case is of a child, born of healthy consanguineous parents, who exhibited hypotonia, mental disability, epilepsy, uncontrolled movements, and gastrointestinal problems. A trial treatment with L-DOPA proved unsuccessful and the exact neurological involvement could not be discerned due to normal metabolic and brain magnetic resonance imaging results.Platelet studies and whole genome sequencing were performed. At age 4, the child's platelets showed a mild aggregation and adenosine triphosphate secretion defect that could be explained by dysmorphic dense granules observed by electron microscopy. Interestingly, the dense granules were almost completely depleted of serotonin. A novel homozygous p.P316A missense variant in VMAT2 was detected in the patient and the consanguineous parents were found to be heterozygous for this variant. Although the presence of VMAT2 on platelet dense granules has been demonstrated before, this is the first report of defective platelet dense granule function related to absent serotonin storage in a patient with VMAT2 deficiency but without obvious clinical bleeding problems. CONCLUSIONS: This study illustrates the homology between serotonin metabolism in brain and platelets, suggesting that these blood cells can be model cells for some pathways relevant for neurological diseases. The literature on VMAT2 deficiency is reviewed.

12.
Blood ; 134(23): 2070-2081, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31217188

RESUMEN

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Asunto(s)
Plaquetas , Enfermedades Genéticas Congénitas , Mutación de Línea Germinal , Factor de Transcripción Ikaros , Mutación Missense , Trombocitopenia , Trombopoyesis/genética , Plaquetas/metabolismo , Plaquetas/ultraestructura , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Femenino , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Células HEK293 , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Masculino , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patología
13.
Platelets ; 30(7): 931-934, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31204551

RESUMEN

A germline heterozygous gain-of-function p.E527K variant in tyrosine kinase SRC was previously found to cause thrombocytopenia, myelofibrosis, bleeding, bone pathologies, premature edentulism and mild facial dysmorphia in nine patients of a single pedigree. Because of this variant, SRC loses its self-inhibitory capacity, causing constitutively active SRC expression in platelets. These patients have fewer and heterogeneous-sized platelets that are hyporeactive to collagen. We now report a 5-year-old girl with syndromic thrombocytopenia due to the same SRC-E527K variant that occurs de novo. A bone marrow biopsy, blood smear analysis, platelet aggregations, flow cytometric analysis of P-selectin, SRC expression and tyrosine phosphorylation studies were performed to confirm the similarities between the two families. This study strengthens our previous finding that hyperactive SRC kinase results in mild platelet dysfunction and thrombocytopenia with hypogranular platelets and further expands the clinical description of this syndrome to improve early recognition.


Asunto(s)
Trombocitopenia/metabolismo , Familia-src Quinasas/metabolismo , Preescolar , Femenino , Humanos
14.
Blood ; 134(23): 2082-2091, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31064749

RESUMEN

A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Hemorragia , Secuenciación de Nucleótidos de Alto Rendimiento , Trombosis , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Trastornos de las Plaquetas Sanguíneas/genética , Femenino , Dosificación de Gen , Hemorragia/diagnóstico , Hemorragia/genética , Hemostasis/genética , Humanos , Masculino , Trombosis/diagnóstico , Trombosis/genética
15.
Haematologica ; 104(5): 1036-1045, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30467204

RESUMEN

Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Plaquetas/patología , Células Madre Pluripotentes Inducidas/patología , Megacariocitos/patología , Esfingolípidos/metabolismo , Trombocitopenia/etiología , Oxidorreductasas de Alcohol/genética , Animales , Plaquetas/metabolismo , Diferenciación Celular , Células Cultivadas , Niño , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Megacariocitos/metabolismo , Metabolómica , Mutación , Linaje , Pronóstico , Trombocitopenia/metabolismo , Trombocitopenia/patología , Pez Cebra
17.
J Allergy Clin Immunol ; 142(2): 630-646, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29391254

RESUMEN

BACKGROUND: Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome. OBJECTIVE: We studied 3 patients from 2 unrelated kindreds harboring compound heterozygous or homozygous stem II variants in RNU4ATAC to gain insight into the mechanisms behind this disorder. METHODS: We systematically profiled the immunologic and hematologic compartments of the 3 patients with Roifman syndrome and performed RNA sequencing to unravel important splicing defects in both cell lineages. RESULTS: The patients exhibited a dramatic reduction in B-cell numbers, with differentiation halted at the transitional B-cell stage. Despite abundant B-cell activating factor availability, development past this B-cell activating factor-dependent stage was crippled, with disturbed minor splicing of the critical mitogen-activated protein kinase 1 signaling component. In the hematologic compartment patients with Roifman syndrome demonstrated defects in megakaryocyte differentiation, with inadequate generation of proplatelets. Platelets from patients with Roifman syndrome were rounder, with increased tubulin and actin levels, and contained increased α-granule and dense granule markers. Significant minor intron retention in 354 megakaryocyte genes was observed, including DIAPH1 and HPS1, genes known to regulate platelet and dense granule formation, respectively. CONCLUSION: Together, our results provide novel molecular and cellular data toward understanding the immunologic and hematologic features of Roifman syndrome.


Asunto(s)
Linfocitos B/fisiología , Plaquetas/fisiología , Cardiomiopatías/genética , Síndromes de Inmunodeficiencia/genética , Megacariocitos/fisiología , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Osteocondrodisplasias/genética , Células Precursoras de Linfocitos B/fisiología , ARN Nuclear Pequeño/genética , Enfermedades de la Retina/genética , Adolescente , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Humanos , Lactante , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Linaje , Enfermedades de Inmunodeficiencia Primaria , Empalme de Proteína/genética , Transducción de Señal/genética , Secuenciación del Exoma
18.
Haematologica ; 102(4): 695-706, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28082341

RESUMEN

Gray platelet syndrome is named after the gray appearance of platelets due to the absence of α-granules. It is caused by recessive mutations in NBEAL2, resulting in macrothrombocytopenia and myelofibrosis. Though using the term gray platelets for GATA1 deficiency has been debated, a reduced number of α-granules has been described for macrothrombocytopenia due to GATA1 mutations. We compared platelet size and number of α-granules for two NBEAL2 and two GATA1-deficient patients and found reduced numbers of α-granules for all, with the defect being more pronounced for NBEAL2 deficiency. We further hypothesized that the granule defect for GATA1 is due to a defective control of NBEAL2 expression. Remarkably, platelets from two patients, and Gata1-deficient mice, expressed almost no NBEAL2. The differentiation of GATA1 patient-derived CD34+ stem cells to megakaryocytes showed defective proplatelet and α-granule formation with strongly reduced NBEAL2 protein and ribonucleic acid expression. Chromatin immunoprecipitation sequencing revealed 5 GATA binding sites in a regulatory region 31 kb upstream of NBEAL2 covered by a H3K4Me1 mark indicative of an enhancer locus. Luciferase reporter constructs containing this region confirmed its enhancer activity in K562 cells, and mutagenesis of the GATA1 binding sites resulted in significantly reduced enhancer activity. Moreover, DNA binding studies showed that GATA1 and GATA2 physically interact with this enhancer region. GATA1 depletion using small interfering ribonucleic acid in K562 cells also resulted in reduced NBEAL2 expression. In conclusion, we herein show a long-distance regulatory region with GATA1 binding sites as being a strong enhancer for NBEAL2 expression.


Asunto(s)
Proteínas Sanguíneas/genética , Elementos de Facilitación Genéticos , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Alelos , Plaquetas/metabolismo , Diferenciación Celular/genética , Factor de Transcripción GATA1/deficiencia , Factor de Transcripción GATA1/genética , Expresión Génica , Genes Recesivos , Genes Reporteros , Genes Ligados a X , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Mutación , Fenotipo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética , Trombocitopenia/sangre , Trombocitopenia/genética , Trombocitopenia/patología
19.
Sci Transl Med ; 8(328): 328ra30, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936507

RESUMEN

The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Asunto(s)
Huesos/patología , Hemorragia/genética , Mutación/genética , Mielofibrosis Primaria/genética , Trombocitopenia/genética , Familia-src Quinasas/genética , Animales , Plaquetas/patología , Células COS , Chlorocebus aethiops , Femenino , Hematopoyesis , Hemorragia/complicaciones , Humanos , Masculino , Linaje , Fenotipo , Mielofibrosis Primaria/complicaciones , Trombocitopenia/complicaciones , Transfección , Pez Cebra
20.
Blood ; 127(23): 2903-14, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-26912466

RESUMEN

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Pérdida Auditiva/genética , Mutación , Trombocitopenia/genética , Células A549 , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Niño , Femenino , Forminas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Pérdida Auditiva/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Síndrome , Trombocitopenia/complicaciones , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA