Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 314: 115055, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429690

RESUMEN

Modified Fenton technique has been widely used to remediate soils contaminated with crude oil but significantly limited to soil organic matter (SOM) consuming oxidants. In this study, soils with developed SOM inactivation by FeOOH formed in situ were created and spiked with crude oil (total petroleum hydrocarbons (TPH): 19453 mg/kg), then treated by modified Fenton reagents. The reaction activity of hydroxyl radicals (•OH) relative to TPH (K) notably increased to 0.65 when the degree of developed inactivation of the SOM (ß) was 100% (DIS-100), which was 1.45, 2.03 and 2.83-fold than that of DIS-50, DIS-15 and control (CK), respectively. Meanwhile, the higher the K, the more •OH transferred, which realized the efficient oriented oxidation of TPH. Moreover, improving the transfer of •OH from SOM to TPH was more important than increasing •OH production in soil remediation. With the ß increasing to 100%, the ratio of invalid H2O2 decomposition to produce O2 decreased to 22%, equal to 25% reduction compared to CK. Therefore, when ß was 100%, the utilization efficiency of H2O2 was improved to 1.48 mg/mmol, which was approximately 1.39, 3.35 and 5.43-fold higher than the efficiency got by DIS-50, DIS-15 and CK, respectively, achieving the cost-effective dedicated oxidation of TPH. In addition, the FeOOH cross-linked with SOM via Fe-O-C and Fe-N bonds to develop inactivation of SOM. In general, this study highlighted a new insight into the effect of developed inactivation of SOM on soil remediation.


Asunto(s)
Petróleo , Contaminantes del Suelo , Alcanos , Análisis Costo-Beneficio , Hidrocarburos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Suelo/química , Contaminantes del Suelo/análisis
2.
J Environ Manage ; 301: 113933, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731951

RESUMEN

The long-alkanes biodegradation rate was generally found slow during widely used pre-oxidation combined with biodegradation for oil contamination treatment, resulting in long and unsustainable removal. In this study, different chitosan content was used to produce iron catalysts for pre-oxidation, and nutrients were added for the long-alkanes biodegradation experiment. Mechanism of Fenton pre-oxidation and improvement in the biodegradation rate of long-alkanes were studied by analyzing the change in organic matter and bacterial community structure, the amount and activity of bacteria in the biological stage, and the degradation amount long-alkanes hydrocarbon before and after pre-oxidation. Results showed that the destruction of bacteria greatly reduced when hydroxyl radical intensity decreased to 4.40 a.u.. Also, the proportion of humic acid-like was high (40.88%), and the community structure was slightly changed with the pre-oxidation for the fast biodegradation (FB) group. In the subsequent biodegradation, it was found that the degradation rate of each long-alkanes in the FB group increased significantly (C30: 4.18-8.32 mg/(kg·d)) with the increase of the degradation of long-alkanes (10-50%). Further studies showed that the high nutrient dynamics (6.05 mg/(kg·d)) of the FB group resulted in high bacteria performance rate (0.53 mol CO2 × log CFU/(104 g2 d)), which further accelerated the substrate transformation(41%). Therefore, the biodegradation rate of long-alkanes was increased (43.8 mg/(kg·d)) with the removal rate of long-alkanes of 76%. The half-life of long-alkanes for the FB group (64 d) was 33 d shorter than the slow biodegradation group (99 d). These results exhibited that pre-oxidation regulation can shorten the bioremediation cycle by improving the biodegradation rate of long-alkanes. This research has good engineering application value.


Asunto(s)
Alcanos , Petróleo , Bacterias , Biodegradación Ambiental , Hidrocarburos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA