Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1070986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699841

RESUMEN

Introduction: Septoria tritici blotch (STB) is one of the most damaging fungal diseases of wheat in Europe, largely due to the paucity of effective resistance genes against it in breeding materials. Currently dominant protection methods against this disease, e.g. fungicides and the disease resistance genes already deployed, are losing their effectiveness. Therefore, it is vital that other available disease resistance sources are identified, understood and deployed in a manner that maximises their effectiveness and durability. Methods: In this study, we assessed wheat genotypes containing nineteen known major STB resistance genes (Stb1 through to Stb19) or combinations thereof against a broad panel of 93 UK Zymoseptoria tritici isolates. Seedlings were inoculated using a cotton swab and monitored for four weeks. Four infection-related phenotypic traits were visually assessed. These were the days post infection to the development of first symptoms and pycnidia, percentage coverage of the infected leaf area with chlorosis/necrosis and percentage coverage of the infected leaf area with pycnidia. Results: The different Stb genes were found to vary greatly in the levels of protection they provided, with pycnidia coverage at four weeks differing significantly from susceptible controls for every tested genotype. Stb10, Stb11, Stb12, Stb16q, Stb17, and Stb19 were identified as contributing broad spectrum disease resistance, and synthetic hexaploid wheat lines were identified as particularly promising sources of broadly effective STB resistances. Discussion: No single Z. tritici isolate was found to be virulent against all tested resistance genes. Wheat genotypes carrying multiple Stb genes were found to provide higher levels of resistance than expected given their historical levels of use. Furthermore, it was noted that disease resistance controlled by different Stb genes was associated with different levels of chlorosis, with high levels of early chlorosis in some genotypes correlated with high resistance to fungal pycnidia development, potentially suggesting the presence of multiple resistance mechanisms.The knowledge obtained here will aid UK breeders in prioritising Stb genes for future breeding programmes, in which optimal combinations of resistance genes could be pyramided. In addition, this study identified the most interesting Stb genes for cloning and detailed functional analysis.

2.
Nucleic Acids Res ; 48(21): 11845-11856, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32856047

RESUMEN

Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.


Asunto(s)
Arabidopsis/genética , Brassica rapa/genética , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Nicotiana/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/metabolismo , Brassica rapa/metabolismo , Dosificación de Gen , Genes Sintéticos , Ingeniería Genética , Hordeum/metabolismo , Interacciones Huésped-Patógeno/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plásmidos/química , Plásmidos/metabolismo , Nicotiana/metabolismo , Activación Transcripcional , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA