Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 483-493, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362471

RESUMEN

The combination of online size-exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) is rapidly becoming a key technique for structural investigations of elaborate biophysical samples in solution. Here, a novel model-refinement strategy centred around the technique is outlined and its utility is demonstrated by analysing data series from several SEC-SAXS experiments on phospholipid bilayer nanodiscs. Using this method, a single model was globally refined against many frames from the same data series, thereby capturing the frame-to-frame tendencies of the irradiated sample. These are compared with models refined in the traditional manner, in which refinement is based on the average profile of a set of consecutive frames from the same data series without an in-depth comparison of individual frames. This is considered to be an attractive model-refinement scheme as it considerably lowers the total number of parameters refined from the data series, produces tendencies that are automatically consistent between frames, and utilizes a considerably larger portion of the recorded data than is often performed in such experiments. Additionally, a method is outlined for correcting a measured UV absorption signal by accounting for potential peak broadening by the experimental setup.


Asunto(s)
Fosfolípidos , Cromatografía en Gel , Fosfolípidos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
J Mol Biol ; 428(21): 4361-4377, 2016 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-27659562

RESUMEN

Despite the development of powerful computational tools, the full-sequence design of proteins still remains a challenging task. To investigate the limits and capabilities of computational tools, we conducted a study of the ability of the program Rosetta to predict sequences that recreate the authentic fold of thioredoxin. Focusing on the influence of conformational details in the template structures, we based our study on 8 experimentally determined template structures and generated 120 designs from each. For experimental evaluation, we chose six sequences from each of the eight templates by objective criteria. The 48 selected sequences were evaluated based on their progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of the designs, revealing a close resemblance to the target structure. We found a significant difference among the eight template structures to realize the above three criteria despite their high structural similarity. Thus, in order to improve the success rate of computational full-sequence design methods, we recommend that multiple template structures are used. Furthermore, this study shows that special care should be taken when optimizing the geometry of a structure prior to computational design when using a method that is based on rigid conformations.


Asunto(s)
Pliegue de Proteína , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Biología Computacional , Cristalografía por Rayos X , Conformación Proteica , Estabilidad Proteica , Solubilidad , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA